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In addition to fuzzy c-means, possibilistic clustering is
useful because it is robust against noise in data. The
generated clusters are, however, strongly dependent
on an initial value. We propose a family of algorithms
for sequentially generating clusters “one cluster at a
time,” which includes possibilistic medoid clustering.
These algorithms automatically determine the num-
ber of clusters. Due to possibilistic clustering’s simi-
larity to the mountain clustering by Yager and Filev,
we compare their formulation and performance in nu-
merical examples.
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1. Introduction

Fuzzy c-means clustering currently plays the central
role in clustering algorithms [1–3], but there is another
useful tool of possibilistic clustering [4], which both re-
sembles and differs from fuzzy c-means. Possibilistic
clustering is robust against noise in data [5]. Results of
possibilistic clustering, however, tend to strongly depen-
dent on initial values. Although there is a proposal of an
algorithm generating “one cluster at a time” [5] to miti-
gate this drawback, this proposal has not yet been put into
a concrete algorithm.

We propose algorithms for sequentially extracting clus-
ters one by one and present an objective function having
the form J�V� of a variable of cluster centers, instead of
J�U�V� of the two variables of memberships and centers
in fuzzy c-means and possibilistic clustering in the origi-
nal formulation.

We also consider how these algorithms are related to
the mountain clustering algorithm [6], and present exam-
ples showing properties of the proposed algorithms and
compare performance of the proposed method and the
mountain clustering.

Our proposal determines the number of clusters auto-
matically, and more efficient than the mountain clustering,
which is also sequential and similar to our proposal.

2. Possibilistic Clustering Formulations

An object of clustering is assumed to be a vector
in p-dimensional Euclidean space: xk � �x1� � � � �xp

k � �
RRRp, (k � 1� � � � �n), and the set of objects is denoted by
X � �x1� � � � �xn�. Cluster centers are denoted by vi �
�v1

i � � � � �v
p
i �

T , i � 1� � � � �c, where c is the number of clus-
ters. Simplified symbol V � �v1� � � � �vc� is used for the
collection of c cluster centers, whereas cluster member-
ship matrix U � �uki�, (i� 1� � � � �c, k� 1� � � � �n) is used as
usual, where uki is the degree of belongingness of object
xk to cluster i. In fuzzy c-means clustering, the constraint
for a fuzzy partition is given by

M � �U � �uki� :
c

∑
i�1

uki � 1��k;uk j � 0�� j�k��

while in possibilistic clustering we set

M � �U � �uki� : uk j � 0�� j�k�� . . . . . . (1)

where we have omitted original constraint 0 �∑
k

uki � N

proposed in [4], for simplicity.
The dissimilarity of clustering is the standard squared

Euclidean distance between an individual and a cluster
center:

Dki � �xk � vi�
2
�

We use the dissimilarity between generic elements x�y �
RRRp, denoted by

D�x�y� � �x� y�2
�

2.1. Fuzzy c-Means and Possibilistic Clustering
Fuzzy c-means [1] and possibilistic clustering are based

on the optimization of an objective function. We consider
the following two:

Je�U�V� �
n

∑
k�1

c

∑
i�1

�ukiDki�λ�1uki�loguki�1�� (2)

J2�U�V� �
n

∑
k�1

c

∑
i�1

��uki�
2Dki�ζ�1�1�uki�

2� (3)

Je is an entropy-based objective function [7], and J2 is a
function for the possibilistic clustering [4] with a restric-
tion to m � 2 and ηi � ζ�1 (1 � i� c).
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We focus on the possibilistic clustering, because the
fuzzy c-means objective function by Bezdek [1] and
Dunn [8] provides no help because it gives the trivial so-
lution of uki � 0 in possibilistic clustering, while Eqs. (2)
and (3) are useful for both possibilistic clustering and
fuzzy c-means.

In the alternative optimization PCM of fuzzy c-means
clustering, we use J � Je or J2 and constraint (1) for pos-
sibilistic clustering.

Algorithm PCM
PCM0: Set an initial value V̄ .
PCM1: Find the optimal solution of J for U while V is
fixed: put

Ū � arg min
U�M

J�U�V̄��

PCM2: Find the optimal solution of J for V while U is
fixed: put

V̄ � argmin
V

J�Ū �V ��

PCM3: If solution �Ū�V̄ � is convergent, stop; else go to
PCM1.
End PCM.

We show solutions for each step, writing uki instead of
ūki, vi instead of v̄i, without confusion, for simplicity.

uki � exp��λDki� . . . . . . . . . . . (4)

for Je, or

uki �
1

1�ζDki
. . . . . . . . . . . . . (5)

for J2, while

vi �
∑n

k�1�uki�
mxk

∑n
k�1�uki�m

� . . . . . . . . . . . (6)

in PCM2 where m � 1 for Je and m � 2 for J2.

3. Sequential Extraction of Clusters

We define two functions related to Eqs. (4) and (5):

Ue�xk�y� � exp��λD�xk�y�� . . . . . . . (7)

U2�xk�y� �
1

1�ζD�xk�y�
. . . . . . . . (8)

Note Ue�xk�vi� � uki for Je; U2�xk�vi� � uki for J2.
To see the properties of possibilistic clustering, we sub-

stitute U�V � � �Ue�xk�vi��i�1�����c into Je�U�V � where vi is
regarded as a variable, yielding

Je�U�V��V� ��λ
c

∑
i�1

n

∑
k�1

exp��λD�xk�vi���

If we put J�e�V� � Je�U�V��V � and

je�y� ��
n

∑
k�1

exp��λD�xk�y���

we have

J�e�V � � Je�U�V��V � � λ
c

∑
i�1

je�vi��

Note that this substitution changes the original formu-
lation of possibilistic clustering, so the optimization of
J�e�V � is not identical to the alternative minimization of
Je�U�V�, so they are expected to have similar properties
(cf. [9]). We therefore study the properties of J�e�V � as a
function of V .

Note first that J�e�V� is the sum of je�vi�. Since no con-
straint is imposed on vi, every je�vi� can be minimized
independently from other je�v j� ( j 	� i). If we assume
the minimizing element is unique, minimization leads to
v̄ � v1 � 
 
 
 � vc and therefore only one cluster center is
obtained as the minimizing element of J�e�V�. This means
that if we want to have multiple clusters from this func-
tion, we must search for different minimizing solutions
of a multimodal function, which is far more difficult than
minimizing a unimodal function.

This leads us to the idea of extracting “one cluster at
a time,” discussed by Davé and Krishnapuram [5]. Note
that this idea has not yet been fully developed, so we dis-
cuss their idea in greater detail in developing new algo-
rithms.

We consider J2�U�V� in the same way. Substitute
U�V� � �Ue�xk�vi��i�1�����c into J2�U�V� in which vi is a
variable. This yields

J�2�V � � J2�U�V��V � �
c

∑
i�1

n

∑
k�1

D�xk�vi�

1�ζD�xk�vi�
�

We put

j2�y� �
n

∑
k�1

D�xk�y�
1�ζD�xk�y�

�

and it follows that

J�2�V � �
c

∑
i�1

j2�vi��

Note again that j2�vi� can be minimized independently
from other j2�v j�. We thus have the unique solution v̂ �
v1 � 
 
 
� vc that minimizes J�2�V �.

These observations justify the use of an algorithm to
extract “one cluster at a time.” generally done as follows.

SC: General Procedure for Sequential Clustering Al-
gorithms
SC1. Let the initial set of objects be X �0� � X and k � 0.
Let function J�v;k� � je�v� (or J�v;k� � j2�v�) with the
set of objects X �k�.
SC2. Search the minimizing element of J�v;k�:

v�k� � argmin
v

J�v;k�

SC3. Extract cluster G�k� that belongs to center v�k�.
SC4. Let X �k�1� � X �k��G�k�. If X �k�1� does not have
sufficient elements to extract one more cluster, stop; else
k :� k�1 and go to step SC2.
End SC.
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With this procedure, we need not specify the number of
clusters beforehand.

Before considering a minimization algorithm which is
not yet specified in this procedure, we compare the two
objective functions and review the mountain clustering.
Note that we call extracting one cluster at a time a se-
quential possibilistic clustering algorithm.

Note: The “one cluster at a time” concept has already
been proposed [5], but the above analysis and algorithms
below have not yet been studied.

3.1. Comparison of Objective Functions

To study properties of J�e�V � and J�2�V �, we study je�y�,
the sum of �Ue�xk�y�, and j2�y�, the sum of U2�xk�y�:

je�y� � �
n

∑
k�1

Ue�xk�y��

j2�y� �
n

∑
k�1

U2�xk�y��

Ue�xk�y� and U2�xk�y�, as the function of y, has properties
similar in the minimization of je�y� and j2�y�. The next
two propositions are easily obtained, and their proofs are
omitted here.

Proposition 1: Function Ue�xk�y� satisfies
�Ue�xk�xk� � min

y
�Ue�xk�y� ��1�

lim
�y��∞

�Ue�xk�y� � 0�

while U2�xk�y� satisfies

U2�xk�xk� � min
y

U2�xk�y� � 0� lim
�y��∞

U2�xk�y� �
1
ζ
�

Proposition 2: Put z � D�xk�y�. Then,

�Ue�xk�y� ��exp��λ z�� U2�xk�y� �
z

1�ζ z
�

If we consider
ge�z� ��exp��λ z��

g2�z� �
z

1�ζ z
� �0 � z ��∞��

as a function of real variable z, then both functions ge�z�
and g2�z� are monotonically increasing.

3.2. Mountain Clustering

Note that the mountain clustering [6] is closely related
to the proposed method. Indeed, the mountain clustering
extracts clusters sequentially, i.e., one cluster at a time.

The mountain function is

M�y� �
n

∑
k�1

exp��αD�xk�y��� �α � 0� . . . (9)

where y � RRRp is restricted to grid points. Let y�1� be the
maximizing point of Eq. (9). The second mountain func-
tion is defined as follows:

M�2��y� � M�y��M�y�1��
n

∑
k�1

exp��αD�y�1��y���

Calculation is then repeated:

M����y� � M���1��y��M�y���1��
n

∑
k�1

exp��αD�y���1��y���

. . . . . . . . . . . . . . . . . . . . (10)

until no significant cluster remains. The stopping criterion
is given by the ratio and a given parameter δ � 0:

M�y�1��

M�y���1��
� δ � . . . . . . . . . . . . (11)

Note that
Proposition 3: M�y� and � je�y� have the identical

form when α � λ :

M�y� �� je�y�
n

∑
k�1

Ue�xk�y� �
n

∑
k�1

exp��αD�xk�y���

4. Sequential Clustering Algorithms

The main problem in the procedure SC is how to opti-
mize the function J�v;k�� je�v� (or J�v;k�� j2�v�). Min-
imization is done in three ways to optimize J�v;k�.

The first way is simplest, minimizing the objective
function on the finite set �y1� � � � �yL�.

Procedure A
A1. Generate candidate points y1� � � � �yL � RRRp. X �0� � X
and k � 0.
A2. Find minimizing element

ȳ � arg min
v�y1�����yL

J�v;k��

A3. Find cluster G�k� with the center ȳ. Extract G�k�:
X �k�1� � X �k��G�k�. If X �k�1� does not have sufficient
elements to extract one more cluster, stop; else k :� k�1
and go to A2.

Points y1� � � � �yL take values at grid points, similar to
the mountain clustering, or can be chosen randomly from
X . Alternatively, we can take �y1� � � � �yL� � X , then the
method may be called a one-pass algorithm of sequential
possibilistic medoid calculation, since the medoid is the
cluster center that corresponds to an object (cf. Kaufman,
Rousseeuw [10] for hard c-medoid).

The second procedure, similar to the ordinary alterna-
tive minimization of fuzzy c-means, is also useful, but re-
quires more calculation than the first method.

Procedure B
B1. Generate candidate points y1� � � � �yL � RRRp as initial
cluster centers. X �0� � X and k � 0.
B2. Repeat the calculation of uki and vi until conver-
gence. Converged points are denoted by z1� � � �z�. Find
minimizing element

z̄ � arg min
v�z1�����z�

J�v;k�� . . . . . . . . . . (12)

B3. Find cluster G�k� with center z̄. Extract G�k�:
X �k�1� � X �k��G�k�. If X �k�1� does not have sufficient
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elements to extract one more cluster, stop; else k :� k�1
and go to B2.

Several cluster centers are simultaneously obtained if
we do not impose condition (12), so this procedure is gen-
erally useful as an algorithm of ordinary possibilistic clus-
tering (cf. [11]).

4.1. Possibilistic Medoid Calculation

The next procedure may be called generalized multi-
pass possibilistic medoid clustering.

Procedure C
C1. Generate candidate points y1� � � � �yL � X and choose
initial cluster centers z1� � � � �zc from Y � �y1� � � � �yL�.
X �0� � X and k � 0.
C2. Repeat C3 until convergence.
C3. Let yi1� � � � �yki � Y be K-nearest elements to zi
(i � 1� � � � �c).
Find minimizing element

z̄i � arg min
v�zi�yi1�����yki

J�v;k��

Put zi � z̄i.
C4. Let

z̄ � arg min
v�zi�yi1�����yki

J�v;k��

Find cluster G�k� with center z̄. Extract G�k�: X �k�1� �
X �k��G�k�. If X �k�1� does not have sufficient elements to
extract one more cluster, stop; else k :� k� 1 and go to
C2.

This requires more calculation than procedures A and
B, and seems less useful for sequential possibilistic clus-
tering, but should be considered to find a medoid as a clus-
ter center. With a slight modification, Procedure C is used
for ordinary possibilistic medoid clustering. We thus have
the next procedure.

Procedure C’ (ordinary possibilistic medoid cluster-
ing)
C’1. Generate candidate points y1� � � � �yL �X and choose
initial cluster centers z1� � � � �zc from Y � �y1� � � � �yL�.
C’2. Repeat C’3 until convergence.
C’3. Let yi1� � � � �yki � Y be K-nearest elements to zi
(i � 1� � � � �c).
Calculate

ūki � exp��λD�xk�zi��� �k� i�

V̄ � arg min
vi�zi�yi1�����yki

J�Ū�V ��

Put zi � v̄i (i � 1� � � � �c).

5. Examples

Figures 1 and 2 show clusters obtained from Proce-
dures B and C for the same set of points on a plane. Ob-
jective function J�e with λ � 30�0 has been used and the
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Fig. 1. Clusters 1� 4 sequentially extracted from a set of
points on a plane using Procedure B.
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Fig. 2. Clusters 1� 5 sequentially extracted from a set of
points on a plane using Procedure C.

extraction of objects uses the crisp criterion of

G�k� � �x� � X : exp��λD�x��v
�k���� β��

with parameter β � 0�2.
Numbers 1� � � � �5 at lower right imply the number of

clusters sequentially extracted with centers shown by
small circles: number 1 is the first cluster, number 2 is
the second, etc.

In Fig. 1, clusters 1 to 4 are extracted except for mis-
classified points shown by asterisks (�) and plusses (�).
After the fourth cluster have been extracted, no object
remains. Note that the correct number of four clusters
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was extracted even though the number of clusters was not
given beforehand.

In Fig. 2, the medoid algorithm was used with all ob-
jects as �y1� � � � �yL� in Procedure C, with a result similar
to that in Fig. 1 except that a fifth cluster was detected,
although not well-separated from other clusters. This al-
gorithm thus fails to find the correct number of clusters,
but provides acceptable overall performance.

The medoid method generally does not perform as well
as c-means, although medoids may be preferred in some
real applications.

Note: Misclassification in Figs. 1 and 2 is reduced if we
use fuzzy c-means using KL-information [12]. Using KL
information requires a large calculation and the number of
clusters must be given beforehand, whereas our proposal
does not require that the number of clusters be known.

Note: We omit the result from Procedure A because it is
similar to that for Procedure C, which generally requires
more calculation than Procedure A, but yields more stable
results, because an iterative algorithm is used.

6. Comparison to the Mountain Clustering

The number of grid points increases exponentially with
dimension, so it is expected that the mountain clustering
processing time also increases exponentially, which is a
major drawback. Processing time for our proposal does
not increase rapidly with the number of dimensions.

This was verified by a numerical experiment in which
p-dimensional data sets, each having 200 points, have
been generated randomly. For p � 2�3�4�5�6, 100 trials
were done and average processing time was recorded. Al-
gorithm A and the mountain clustering were applied to
the same data sets, where five grid points in the mountain
clustering for each coordinate were used (Table 1).We ob-
serve the rapid growth of processing time in the mountain
clustering, while our proposal using algorithm A does not
rapidly increase. The same numbers are shown in Fig. 3
where the horizontal axis is the dimension and the verti-
cal axis is the logarithmic scale of processing time. The
efficiency of the sequential algorithm is observed.

7. Conclusions

We have proposed algorithms for sequential extraction
of clusters linking possibilistic clustering [4, 5] and the
mountain clustering [6] by eliminating the membership
matrix and considering the objective function of cluster
centers alone. We also studied a medoid algorithm re-
lated to sequential extraction and the possibilistic cluster-
ing, and compared performance using numerical exam-
ples. We found that the our proposal is far more efficient
than the mountain clustering when the data space dimen-
sion is large. Our proposal does not require the number of
clusters, unlike ordinary fuzzy c-means.

We clarified possibilistic clustering and its variations,

Table 1. Comparison of processing time by the mountain
clustering and the sequential clustering with the algorithm A.
The hyphen (�) shows that calculation was stopped before
convergence because of too much processing time.

Dimension Mountain Sequential
p (ms) (ms)
2 24�84 30�46
3 772�96 35�62
4 20453�333 42�03
5 485758�59 60�47
6 � 74.68

processing time (msec)

1

10

100

1000

10000

100000

1000000

2 3 4 5

MC

SC

Fig. 3. Mountain (MC) versus sequential algorithm A(SC)
processing time for dimensions p � 2�3�4�5.

finding that the mountain clustering may have another op-
tion of taking random points instead of grid points [6], and
J�2�V� can be used for the objective function in the moun-
tain clustering. We also proposed the use of possibilistic
medoids, but could demonstrate no advantage to them, al-
though applications such as document retrieval may find a
medoid useful as a representative object of a cluster than
a centroid.

To summarize, possibilistic clustering is a useful se-
quential algorithm thanks to the automatic determination
of the number of clusters. Many fuzzy c-means variations
thus invite further investigation of both methodological
features and applications.
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