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We propose axiomatizing a generalized Shapley value

of games for potential application to games on set sys-

tems satisfying the condition of normality. This en-

compasses both the original Shapley value and Faigle

and Kern’s Shapley value, which is generalized for a

cooperative game defined on a subcoalition.
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1. Introduction

Let X = {1,2, . . . ,n} be a set of players, for which any

subset of X is called a coalition. Games are nonadditive

functions from the set of coalitions to IR. The Shapley

value is one of the game’s solutions, which is the eval-

uation of the contribution of each player or the distribu-

tion of the profit for each player, charactarized by natu-

ral and understandable axiomatization [1]. The Shapley

value is applied to the game defined on 2X . It cannot,

however, be applied to more general games. Generaliza-

tions of the Shapley value have been proposed by several

authors. Algaba and et al. proposed a generalization of

the Shapley value for games on antimatroids and charac-

terized by an axiomatization that contains axiomatization

of the original Shapley value [2]. On the other hand, Faige

and Kern proposed another generalization of the Shapley

value, and it has applicability to the cooperative game [3].

The axiomatization of Faige and Kern’s Shapley value is

not known, however.

We have proposed an entropy of the capacity on lat-

tices using maximal chain concept, and given its axioma-

tization [4, 5]. Using the same idea, we generalize Faige

and Kern’s Shapley value to a more general form that is

applicable both to the cooperative game and more gen-

eral games, such as multichoice games and bicapacity,

and characterize it by axiomatization from a perspective

differing from the axiomatization of the original Shapley

value.

This paper is organized as follows. Section 2 dis-

cusses preliminaries on set systems and games, then de-

fines Faigle and Kern’s Shapley value. Section 3 axioma-

tizes it and Section 4 proves the main theorem. Section 5

shows how these results can be applied to games defined

on lattices and gives an example of a multichoice game

application. Section 6 presents conclusions.

2. Games on Normal Set Systems

Throughout this paper, we consider a finite universal

set X = {1,2, . . . ,n}, n ≥ 1, and 2X denotes the power set

of X . Consider S a subset of 2X that contains /0 and X .

We call (X ,S) – or simply S if no confusion occurs – a

set system.

Let A,B ∈S. We say that A is covered by B, and write

A ≺ B or B ≻ A, if A ( B and A ⊆ C ( B together with

C ∈S imply C = A.

Definition 1—maximal chain of set system: Let S

be a set system. We call C a maximal chain of S if

C = (C0,C1, . . . ,Cm) satisfies /0 = C0 ≺C1 ≺ ·· · ≺ Cm =
X ,Ci ∈S, i = 0, . . . ,m.

We denote by Γk(S) the set of all k-length maxi-

mal chains of S 1 ≤ k ≤ n, where the length of C =
(C0,C1, . . . ,Cm) is m.

Definition 2—totally ordered set system: We say

that (X ,S) is a totally ordered set system if for any

A,B ∈S, either A ⊆ B or A ) B.

If (X ,S) is a totally ordered set system, then (X ,S)
has only one maximal chain.

Definition 3—normal set system: We say that (X ,S)
is a normal set system if for any A ∈ S, there exists n-

length maximal chain C ∈ Γn(S) satisfying A ∈ C .

Definition 4—game on a set system: Let (X ,S) be a

set system. A function v : S→ IR is a game on (X ,S) if

it satisfies v( /0) = 0 and v(X) = 1.

The classical cooperative game is defined on (X ,2X).

Definition 5—Shapley value of classical game [1]:

Let v be a game on (X ,2X ). The Shapley value of v,

Φ(v) = (φ1(v), . . . ,φn(v)) ∈ IRn is defined by

φi(v) := ∑
A⊆N\{i}

γn
|A|(v(A∪{i})− v(A)), i = 1, . . . ,n,
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where γn
k := (n− k−1)! k!/n!.

Note that ∑n
i=1 φi(v) = v(X) holds. The fact that the

Shapley value can be represented using the maximal

chains is well known in game theory.

Proposition 6: Fix i ∈ X arbitrarily. For any C ∈
Γn(2

X), there exists the unique Ai
C

∈ C such that {i} /∈

Ai
C

, Ai
C
∪{i} ∈ C and

φi(v) =
1

n!
∑

C∈Γn(2X )

(v(Ai
C
∪{i})− v(Ai

C
))

holds.

We give a proof of Proposition 6 for the sake of com-

pleteness.

Proof: |Γn(2
X)| = n! holds. Fix i ∈ X arbitarily.

First, we show that for any C ∈ Γn(2
X), there exists a

unique Ai
C

∈ C such that {i} /∈ Ai
C

and Ai
C
∪ {i} ∈ C .

Fix a C = (C0,C1, . . . ,Cm) ∈ Γn(2
X). We have for i =

1, . . . ,m, |Ci \Ci−1| = 1 so that m = n holds. We have

Ci \Ci−1 6= C j \C j−1 for i < j because if Ci \Ci−1 =C j \
C j−1 then C j ⊇Ci\Ci−1. Since i < j, C j−1 ⊇Ci, therefore

C j−1 ⊇Ci \Ci−1, which is a contradiction. Hence, for any

{i} ⊆ X , there is an Ai
C

∈ C that satisfies {i} /∈ Ai
C

and

Ai
C
∪{i} ∈ C .

Next we show that for A⊂N\{i}, the number of chains

that include A∪{i} and A is (n− |A| − 1)!|A|! Fix i ∈ X

arbitrarily. The number of chains from A∪{i} to N is (n−
|A|−1)! and chains from /0 to A is |A|! Hence the number

of chains that include A∪{i} and A is |A|! · (n−|A|−1)!
Therefore

1

n!
∑

C∈Γn(2X )

(v(Ai
C ∪{i})− v(Ai

C ))

=
(n−|A|−1)! · |A|!

n!
∑

A∈N\{i}

(v(A∪{i})− v(A)),

which completes the proof.

We extend Faigle and Kern’s Shapley value to our

framework.

Definition 7—Shapley value of game on set system:

Let v be a game on a normal set system (X ,S). The

Shapley value of v, Φ(v) = (φ1(v), . . . ,φn(v)) ∈ IRn is

defined by

(FK) φi(v) :=
1

|Γn(S)| ∑
C∈Γn(S)

(v(Ai
C
∪{i})− v(Ai

C
)),

where Ai
C

:= A ∈ C ∈ Γn(S) such that {i} /∈ A and A∪
{i} ∈ C .

Note that for each C ∈ Γn(S), there exists a unique

Ai
C

:= A ∈ C ∈ Γn(S) for any i ∈ X (See Prop. 6).

We discuss the domain of Φ. Let v be a game on (X ,S).
We call (X ,S,v) a game space. Let Σn be the set of all

normal set system of X := {1,2, . . .,n} and let ∆S be

the set of all game space defined on normal set systems

(X ,S). The domain of Φ is ∆ :=
⋃∞

n=1

⋃

S∈Σn
∆S, and Φ

is a function defined on ∆ to IRn. We denote simply Φ(v)
instead of Φ(X ,S,v) so long as no confusion occurs.

We introduce further concepts about games, which will

be useful for stating axioms.

Definition 8—dual game: Let v be a game on (X ,S).
The dual game of v is defined on Sd := {Ac ∈ 2X |A∈S}
by vd(A) := 1−v(Ac) for any A ∈S

d , where Ac := X \A.

Definition 9—permutation of v: Let π be a permuta-

tion on X . The permutation of v by π is defined on

π(S) := {π(A) ∈ 2X | A ∈S} by π ◦ v(A) := v(π−1(A)).

Consider a chain of length 2 as a set system, denoted by

2 (e.g., { /0,{1},{1,2}}), and a game v2 on it. We denote

by the triplet (0,s, t) the values of v2 along the chain and

we assume 2 := { /0,{1},{1,2}} unless otherwise noted.

Definition 10—embedding of v2: Let v be a game on

a totally ordered normal set system (X ,S), where S :=
{C0, . . . ,Cn} such that Ci−1 ≺Ci, i= 1, . . . ,n, and let v2 :=
(0,s,1) be a game on 2. For Ck ∈ S, vCk is called the

embedding of v2 into v at Ck and defined on the totally

ordered normal set system (XCk ,SCk) by

vCk(A) :=















v(A), if A =C j, j < k,
v(Ck−1)+ s ·

(

v(Ck)− v(Ck−1)
)

,
if A =C′

k,
v(C j−1), if A =C′

j, j > k,

. (1)

where {ik} := Ck \Ck−1, i
′
k 6= i′′k , (X \ {ik})∩ {i′k, i

′′
k} =

/0,XCk := (X \ {ik}) ∪ {i′k, i
′′
k},C

′
k := (Ck \ {ik}) ∪

{i′k},C
′
j := (C j−1 \ {ik}) ∪ {i′k, i

′′
k} for j > k, and

S
Ck := {C0, . . . ,Ck−1,C

′
k,C

′
k+1, . . . ,C

′
n+1}.

Note that more properly, the dual game of v is the

dual game space of the game space (X ,S,v) that is de-

fined by (X ,S,v)d := (X ,Sd ,vd), the permutation of v

is the permutation of the game space (X ,S,v) that is de-

fined by (X ,S,v)π := (X ,π(S),π ◦ v), and the embed-

ding of (0,s,1) into v is the embedding of the game space

({1,2},2,(0,s,1)) into the game space (X ,S,v), and it is

defined by (X ,S,v)Ck := (XCk ,SCk ,vCk).

3. Axiomatization of the Generalized Shapley

Value

We introduce six axioms for our proposal Shapley

value.

A1 (continuity). For any game (0,s, t) on 2, the function

φ1(0,s, t) is continuous for s on IR.

A2 (efficiency). For any game (0,s, t) on 2, φ1(0,s, t)+
φ2(0,s, t) = v(X) = t.

A3 (dual invariance). For any (0,s, t), Φ(0,s, t) =
Φ(0,s, t)d holds.

A4 (embedding efficiency). Let (X ,S) be a totally or-

dered set system and let S := {C0, . . . ,Cn},Ci−1 ≺Ci, i =
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1, . . . ,n. For any v on (X ,S), any (0,s,1) and for any

Ck ∈ S, φi(v
Ck) = φi(v) for any i 6= i′k, i

′′
k , φi′

k
(vCk) =

φik(v) · φ1(0,s,1) and φi′′
k
(vCk) = φik(v) · φ2(0,s,1) hold,

where {ik} :=Ck \Ck−1 = {i′k, i
′′
k}.

A5 (convexity). Let (X ,S), (X ,S1) and (X ,S2) be nor-

mal set systems satisfying Γn(S1)∪Γn(S2) = Γn(S) and

Γn(S1)∩Γn(S2) = /0 and let v be a game on S. There ex-

ist α ∈]0,1[ such that for every game v on S and for every

i ∈ X, it holds that φi(v) = αφi(v|S1
)+(1−α)φi(v|S2

).

A6 (permutation invariance). Let v be a game on (X ,S).
For any permutaion π on X satisfying π(S) =S, φi(v) =
φπ(i)(π ◦ v), i = 1, . . . ,n holds.

We obtain the following theorem:

Theorem 11: Let v be a game on a normal set system

(X ,S). (FK) holds if and only if A1, A2, A3, A4, A5

and A6 hold.

We treat games defined on normal set systems. If the

underlying space is not normal, Definition 7 cannot be ap-

plied to such games because φi(v) is calculated as an aver-

age of i’s contributions v(A∪{i})−v(A). For instance, let

X := {1,2,3}. If v is defined on { /0,{1},{1,2,3}} which

is not normal, we cannot know contributions of each sin-

gle {2} and {3}.

We discuss the above axioms in detail below.

3.1. Continuity

More generally, for any game on any normal set sys-

tems (X ,S), φi(v) is continuous for v.

3.2. Efficiency

More generally, for any game on a normal set system,

∑i φi(v) = v(X) holds.

Proposition 12: For any game on a normal set system

(X ,S), it holds that ∑n
i=1 φi(v) = v(X).

Proof: Let v be a game on (X ,S). We then have

n

∑
i=1

φi(v) =
n

∑
i=1

(

1

|Γn(S)| ∑
C∈Γn(S)

(v(A∪{i})− v(A))

)

=
1

|Γn(S)| ∑
C∈Γn(S)

n

∑
i=1

(v(A∪{i})− v(A))

=
1

|Γn(S)| ∑
C∈Γn(S)

(v(X)− v( /0)) = v(X).

3.3. Dual invariance

More generally, for any games on any normal set sys-

tems (X ,S), Φ(v) is dual invariant.

Proposition 13: For any games v on a normal set sys-

tem (X ,S), Φ(vd) = Φ(v).

Proof: Let v be a game on S. For any A ∈ S,

(Ac)c = A, hence the dual mapping is a bijection from

S to S
d . Then, C := (C0, . . . ,Cn) ∈ Γn(S) if and only

if C d := (Cc
n, . . . ,C

c
0) ∈ Γn(S

d), since C j ≺ C j+1 implies

Cc
j ≻Cc

j+1. Hence |Γn(S)|= |Γn(S
d)|. Therefore

φi(v
d) =

1

|Γn(Sd)| ∑
C∈Γn(Sd)

(

vd(Ai
C
∪{i})− vd(Ai

C
)
)

=
1

|Γn(Sd)| ∑
C∈Γn(Sd)

(

(1− vd(Ai
C
))

−(1− vd(Ai
C ∪{i}))

)

=
1

|Γn(S)| ∑
C∈Γn(S)

(v(B∪{i})− v(B)) = φi(v),

where Ai
C

:= A ∈ C ∈ Γn(S) such that {i} /∈ A and A∪

{i} ∈ C , and B := X \ (Ai
C
∪{i}).

3.4. Embedding Efficiency

Let v be a game on a totally ordered set system S :=
{C0, . . . ,Cn} such that Ci−1 ≺Ci, i = 1, . . . ,n, The embed-

ding at Ck into v by (0,u,1) means that ik := Ck \Ck−1 is

split into {i′k, i
′′
k} whose contributions are φ1(0,s,1) and

φ2(0,s,1). A3 implies φi′
k
(vCk)+φi′′

k
(vCk) = φik(v), so that

A3 is a natural axiom in the meaning of the contributions

of players i′k and i′′k .

4. Proof of Theorem

Before the proof of Theorem 11, we show a lemma

needed later.

Lemma 14: [6] Let f (x) be a continuous function on

IR.

(i) For any x,y, f (x+ y) = f (x)+ f (y) holds if and only

if f (x) = αx,α ∈ IR.

(ii) For any x,y, f (x+ y) = f (x) f (y) holds if and only if

f (x) = eαx,α ∈ IR, or constant valued f (x) = 0.

(iii) For any x,y, f (xy) = f (x) f (y) holds if and only if

f (x) = |x|α or f (x) = sign(x)|x|α ,α ≥ 0.

Lemma 15: For any normal set systems (X ,S) and

(X ,S′) satisfying S1 ( S, there exist S1 and S2 such

that Γn(S1)∪ Γn(S2) = Γn(S), Γn(S1)∩ Γn(S2) = /0,

S1 (S
′ and S2 (S.

Proof: Choose one element as A from S \S′,

and put S1 := {B ∈S | B ⊆ A or B ) A} and S2 := {B ∈
S | B ⊆ A′ or B ) A′, where A′ ∈ S \A satisfying |A′| =
|A|}. Then Γn(S1) contains all elements that contain A

and Γn(S2) contains all elements that do not contain A of

Γn(S).
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Lemma 16: For any normal set systems (X ,S) sat-

isfying |Γn(S)| ≥ 2, there exist S1 and S2 such that

Γn(S1)∪Γn(S2) = Γn(S) and Γn(S1)∩Γn(S2) = /0.

Proof: Choose one element as A from S that sat-

isfies that there exists A′ ∈S\A such that |A′| = |A| and

put S1 := {B ∈S | B ⊆ A or B ) A} and S2 := {B ∈S |
∃A′ ∈ S \ A such that B ⊆ A′ or B ) A′}. Then Γn(S1)
contains all elements that contain A and Γn(S2) contains

all elements which do not contain A of Γn(S).

We now show the proof of Theorem 11.

Proof: (necessity) φ1(0,s, t) = s clearly satisfies

A1, and by Propositions 12 and 13, (FK) satisfies A2 and

A3, respectively.

We show that (FK) satisfies A4. Let v be a game on

S := {C0, . . . ,Cn} such that Ci−1 ≺ Ci, i = 1, . . . ,n. The

game vCk that is an embedding of (0,s,1) into v at Ck is de-

fined on SCk = {C0, . . . ,Ck−1,Ck′,Ck,Ck+1, . . . ,Cn} such

that Ck′ ≺Ck ≺Ck+1. We then have

φi(v
Ck) = φi(v), i 6= i′k, i

′′
k ,

φi′
k
(vCk) = vCk(C′

k)− vCk(Ck−1)

= (v(Ck−1)+u · (v(Ck)− v(Ck−1)))− v(Ck−1)

= (v(Ck)− v(Ck−1)) ·u = φik(v) ·φ1(0,s,1)

and

φi′′
k
(vCk) = vCk(C′

k+1)− vCk(C′
k)

= v(Ck)− (v(Ck−1)+u · (v(Ck)− v(Ck−1)))

= (v(Ck)− v(Ck−1))(1− s)

= φik(v) ·φ2(0,s,1),

that imply A4.

We show that (FK) satisfies A5. Let v be a game on S.

Then we have

φi(v) =
1

|Γn(S)| ∑
C∈Γn(S)

(v(Ai
C
∪{i})− v(Ai

C
))

=
1

|Γn(S)|

(

∑
C∈Γn(S1)

+ ∑
C∈Γn(S2)

)

(v(Ai
C ∪{i})− v(Ai

C ))

=
|Γn(S1)|

|Γn(S)|

1

|Γn(S1)|

∑
C∈Γn(S1)

(v|S1
(Ai

C
∪{i})− v|S1

(Ai
C
))

+
|Γn(S2)|

|Γn(S)|

1

|Γn(S2)|

∑
C∈Γn(S2)

(v|S2
(Ai

C
∪{i})− v|S2

(Ai
C
))

=
|Γn(S1)|

|Γn(S)|
φi(v|S1

)+
|Γn(S2)|

|Γn(S)|
φi(v|S2

)

and
|Γn(S1)|

|Γn(S)|
+

|Γn(S2)|

|Γn(S)|
= 1.

(sufficiency) First, we show that for any capacity on a

totally ordered normal set system 2, A1, A2 and A3 im-

plies (FK). Without loss of generality, we may assume

t = 1. Put f (x) := φ1(0,x,1), then we have φ1(0,x,1)+
φ2(0,x,1) = 1, so that φ2(0,x,1) = 1− f (x) by A2 and

f (x) = 1− f (1− x) . . . . . . . . . . . . . (2)

by A3. Assume that v3 is a capacity on (X :=
{1,2,3},{ /0,{1},{1,2},X}) and v3(1) := a,v3({1,2}) :=
a+ b,v3(X) := a+ b+ c = 1,a,c ≥ 0,b > 0. We can re-

gard v3 as the embedding of v2 = (0,b/(1−a),1) into

v = (0,a,1) on ( /0,{1},X) at X . Then, by A4, we get

φ1(v
3) = φ1(0,a,1) = f (a). . . . . . . . . . (3)

Similarly, we can also regard v3 as the embedding of with

v2 = (0,a/(a+b),1) into v= (0,a+b,1) on ( /0,{1,2},X)
at {1,2}. Then we obtain by A4,

φ1(v
3) = φ1(0,a+b,1)φ1(0,a/(a+b),1) (4)

= f (a+b) f (a/(a+b)).

Eqs. (3) and (4) yield

f (a) = f (a+b) f (a/(a+b)). . . . . . . . . . (5)

Putting x := a+ b and y := a/(a+ b), we have f (xy) =
f (x) f (y), so that by Lemma 14 f (x) = xα ,α ∈ IR. Putting

x = 1/2 in (2), we obtain f (x) = x. Hence we have

φ1(0,x,1) = f (x) = x and φ2(0,x,1) = 1− x, so that for

any (0,x,1), therefore for any (0,s, t), (FK) holds.

Assume that (FK) holds for a game v on the totally or-

dered normal set system S= {C0,C1, . . . ,Cn}, Ci−1 ≺Ci,

i = 1, . . . ,n Then by A3, for vCk , we have φi(v
Ck) = φi(v)

for any i 6= i′k, i
′′
k ,

φi′
k
(vCk) = φik(v) ·φ1(0,u,1)

=
(

v(Ck)− v(Ck−1)
)

·u = vCk(C′
k)− vCk(Ck−1)

and

φi′′
k
(vCk)

= φik(v) ·φ1(0,u,1)

=
(

v(Ck)− v(Ck−1)
)

· (1−u) = vCk(C′
k+1)− vCk(C′

k),

where {ik} := Ck \Ck−1 = {i′k, i
′′
k} by (1) and A3, which

means (FK) holds for vCk , so that (FK) holds for any

games on totally ordered normal set systems.

Next, we show that for normal set system that is not

totally ordered, (FK) also holds. Fix a normal set sys-

tem S ⊆ 2X . By Lemma 15, there exist S1, . . . ,Sk and

α,α1, . . . ,αk, and we have

Γn(2
X) = Γn(S)∪Γn(S1)∪· · ·∪Γn(Sk),

Γn(S)∩Γn(S1)∩· · ·∩Γn(Sk) = /0,

φi(v) = αφi(v|S)+α1φi(v|S1
)+ · · ·+αkφi(v|Sk

) (6)

412 Journal of Advanced Computational Intelligence Vol.12 No.5, 2008

and Intelligent Informatics



Axiomatization of Shapley Values of Games on Set Systems

for i = 1, . . . ,n and α + α1 + · · ·+ αk = 1. Applying

Lemma 16 successively, we obtain totally ordered normal

set systems S1, . . . ,Sℓ,S1
1, . . .S

ℓ(1)
1 , . . . ,S1

k , . . .S
ℓ(k)
k and

it holds that

φi(v) = α1φi(v|S1)+ · · ·+α lφi(v|Sℓ)

+α1
1 φi(v|S1

1
)+ · · ·+α

ℓ(1)
1 φi(v|

S
ℓ(1)
ℓ(1)

)

+ · · · . . . . . . . . . . . . . . (7)

+α1
k φi(v|S1

k
)+ · · ·+α

ℓ(k)
k

φi(v|
S

ℓ(k)
k

)

=: βC1
φi(v|C1

)+ · · ·+βCn!
φi(v|Cn!

),

for i = 1, . . . ,n, α1 + · · ·+αℓ = α,α1
1 + · · ·+α

ℓ(1)
1 = α1,

. . . ,α1
k + · · ·+α

ℓ(k)
k =αk and βC1

+ . . .+βCn!
= 1. Define

a game v j, j = 1, on 2X by

v j(A) :=

{

0, |A|< j

1, |A| ≥ j

Then we have

φi(v j) = ∑
C∈Γn(2X ),C∋A,A\{i},

A∋{i},|A|= j

βC φi(v|C )

= ∑
C∈Γn(2X ),C∋A,A\{i},

A∋{i},|A|= j,

βC .

By A6, for any permutation π on X,

φi(v j) = φπ(i)(π ◦ v j)

= φπ−1(i)(v j)

holds, so that we have

∑
C∈Γn(2X ),C∋A,A\{1},

A∋{1},|A|= j

βC = · · ·= ∑
C∈Γn(2X ),C∋A,A\{n},

A∋{n},|A|= j

βC

for i = 1, . . . ,n and j = 1, . . . ,n, which yields

βC1
= · · ·= βCn!

=
1

n!
. . . . . . . . . . . . (8)

Substituting Eq. (8) for Eqs. (6) and (7), we obtain

αφi(v|S) = βS1
φi(v|S1

)+ · · ·βSℓ
φi(v|Sℓ

)

=
1

n!

(

φi(v|S1
)+ · · ·φi(v|Sℓ

)
)

,

so that

φi(v|S)

=
1

|Γn(S)| ∑
C∈Γn(S)

φi(v|C )

=
1

|Γn(S)| ∑
C∈Γn(S)

(

v|S(Ai
C
∪{i})− v|S(Ai

C
)
)

.

a

d e f

b c

g

L

{d,e, f}

{d} {e} { f}

{d,e} {e, f}

/0

η(L)

Fig. 1. Translation of lattice

5. Application to Game on Lattice

The lattice (L,≤) is a partially ordered set such that

for any pair x,y ∈ L, there exist a least upper bound x∨ y

(supremum) and a greatest lower bound x∧ y (infimum)

in L. Consequently, for finite lattices, there always exist

a greatest element (supremum of all elements) and a least

element (infimum of all elements), denoted by ⊤,⊥ (see

[7]). Our approach may have applicability to games de-

fined on lattices that satisfy normality by translation from

lattices to set systems (cf. [4]).

Evidently a set system is not necessarily a lattice.

Moreover, a normal set system is not necessarily a lattice.

Indeed, take X = {1,2,3,4} and S := { /0,{1},{3},
{1,2},{2,3},{1,4},{3,4},{1,2,3}, {1,3,4},X}. Then,

{1} and {3} have no supremum.

We can translate lattices to set systems that consisted

by its join-irreducible elements.

Definition 17—join-irreducible element: An ele-

ment x ∈ (L,≤) is join-irreducible if for all a,b ∈ L,

x 6=⊥ and x = a∨b implies x = a or x = b.

We denote by J (L) the set of all join-irreducible ele-

ments of L. Similarly, meet-irreducible elements are de-

fined by replacing ∨ by ∧ in the above definition. The set

of all meet-irreducible elements is denoted by M (L).
The mapping η for any a ∈ L, defined by

η(a) := {x ∈ J (L) | x ≤ a}

is a lattice-isomorphism of L onto η(L) := {η(a) | a ∈ L},

that is, (L,≤)∼= (η(L),⊆).

5.1. Example – Multichoice Game

Let N := {0,1, . . . .n} be a set of players, and let L :=
L1 × ·· ·×Ln, where (Li,≤i) is a totally ordered set Li =
{0,1, . . . , ℓi} such that 0 ≤i 1 ≤i · · · ≤i ℓi. Each Li is the

set of choices of player i. (L,≤) is a normal lattice. For

any (a1,a2, . . . ,an),(b1,b2, . . . ,bn) ∈ L, (a1,a2, . . . ,an) ≤
(b1,b2, . . . ,bn) iff ai ≤i bi for all i = 1, . . . ,n. We have

J (L) = {(0, . . . ,0,ai,0, . . . ,0) | ai ∈ J (Li) = Li \{0}}
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and |J (L)|= ∑n
i=1 ℓi. In this case, applying Definition 7,

we obtain

φ j
i (v) = φ(0,...,0,ai= j>0,0,...,0)(v)

= ∑
a∈L/Li

ξ
(a, j)
i (v(a, j)− v(a, j−1)) ,

where L/Li := L1 ×·· ·×Li−1 ×Li+1 ×·· ·×Ln, (a,ai) :=
(a1, . . . ,ai−1,ai,ai+1, . . . ,an) ∈ L such that a ∈ L/Li and

ai ∈ Li, and

ξ
(a,ai)
i :=

(

n

∏
k=1

(

ℓk

ak

)

)

·

(

∑n
k=1 ℓk

∑n
k=1 ak

)−1

·
ai

∑n
k=1 ak

.

φ j
i (v) represents the contribution of player i playing at

level j compared to level j−1, where j, j−1 ∈J (Li) =
Li \{0}, hence player i’s overall contribution is given by

φi(v) =
ℓi

∑
j=1

φ
j

i (v).

ξ
(a,ai)
i is the rate of the number of chains which contain

(a,ai) and (a,ai −1). In fact,

|{C ∈ C (L) |C ∋ (a,ai),(a,ai−1)}|

=
(∑n

k=1 ak −1)!

(∏n
k=1(ak!))(ai −1)!/(ai!)

·
(∑n

k=1(ℓk −ak))!

∏n
k=1((ℓk −ak)!)

and |C (L)|= (∑n
k=1 ℓk)!/∏n

k=1(ℓk!).

6. Conclusions

We have proposed axiomatizing the Shapley value of

games defined on normal set systems that accords to

Faigle and Kern’s Shapley value for a cooperative game.

Its definition, an average contribution of each player of

all maximal chains, appears adequate and its axiomati-

zation is natural and understandable. In considering the

following example, let v be a game defined on (X ,S)
where X = {1,2,3},S = { /0,{1},{2},{1,2},{1,2,3}}
and v( /0) = 0,v({1}) = 0.01,v({2}) = 0,v({1,2}) =
0.01,v({1,2,3}) = 1. Algaba et al.’s solution is

(φ1(v),φ2(v),φ3(v))= (0.34,0.33,0.33), and our solution

is (φ1(v),φ2(v),φ3(v)) = (0.01,0,0.99).
In previous work, we discussed the entropy of capaci-

ties defined on a regular set system, not a normal set sys-

tem [4, 5]. The definition of the regular set system is as

follows:

Definition 18—regular set system: We say that (X ,
S) is a regular set system if all maximal chains of S are

n-length.

Our entropy is modifiable for applying capacities de-

fined on normal set systems similar to the Shapley value.

Its fourth axiom [5] is slightly modified to our form simi-

lar to A5 here.
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