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Decision rules are a key technique in decision making,
data mining and knowledge discovery in databases.
We introduce an application of decision rules, hand-
writing pattern classification. When decision rules are
applied to pattern recognition, one rule forms a hyper-
rectangle in feature space, i.e., each decision rule cor-
responds to one hyperrectangle. This means that a set
of decision rules is considered a classification system,
called the subclass method. We apply decision rules to
handwritten Japanese character recognition, showing
experimental results.
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1. Introduction

Decision rules and decision trees are key techniques in
data mining and knowledge discovery in databases [1–4].
A major advantage of decision rules and decision trees is
their understandability and interpretability. Once we find
a set of decision rules for a given data, so rules enable
us to easily understand what obtained rules mean. Rough
set theory provides a good way for finding decision rules
from a given data-set, and it is often applied practically to
KANSEI engineering.

Kudo et al. [5, 6] introduced the subclass method to pat-
tern recognition because (1) it is assumed that objects with
the same class must be distributed closely in feature space,
and (2) if we can determine regions that cover all target
objects, but cover none of no-target objects, then such a
set of regions becomes a classification system. Based on
this idea, Kudo introduced several algorithms to find re-
gions that cover all target objects. In these algorithms,
each region is found as a hyperrectangle of feature space.
Hyperrectangles are an expression of different from de-
cision rules or decision trees, i.e., a strong relationship
exists between data mining with decision rules and trees
and pattern recognition using the subclass method. This
also implies that rough set theory is closely connected to
pattern recognition.

Little discussion has been made on the practical appli-
cation of subclass methods, so we first apply the subclass
method to a practical application, off-line handwritten
Japanese character (kanji) recognition, on which consid-

erable research has been done [8–10]. Researchers have
discussed classification systems using statistical tech-
niques such as the subspace method, the simple similar-
ity method, the multiple similarity method, the compound
Mahalanobis function, and quadratic compound function.
We start by discussing on handwritten kanji recognition
based on logical techniques, which have the advantages
of (1) results that make it what the obtained classification
means, and (2) knowledge enabling us to know regions in
which learning samples are distributed. A hyperrectangle
is found by using the common rough set theory techniques
such as LERS and RSES [11, 12]. This is difficult to ap-
ply practically to pattern recognition, it cannot handle a
data-set with a large number of samples. To find decision
rules such as hyperrectangles, we focus on decision trees
learning because it requires less computation time when
we use it in practical applications.

This paper is organized as follows: Section 2 discusses
the subclass method, and the relationship between it and
decision rules. Section 3 gives the algorithm for finding
decision rules from a large learning sample set. This al-
gorithm is based on binary decision tree learning. Sec-
tion 4 goes into handwritten kanji classification. Section
5 gives experimental results of classification, and Section
6 presents conclusions.

2. Subclass Method and Decision Rules

The subclass method was first introduce by Kudo et
al. [5] in 1989. The subclass method is motivated as fol-
lows:

Consider a class and its learning sample setD� �
�x1�x2� � � � �xp�, and consider another class and its learning
sample setD� � �y1�y2� � � � �yq�. Here, it is assumed that
D� andD� are disjoint to each other, i.e.,D� �D� � /0.
Any element ofD� is called a positive sample and ofD�

a negative sample. If a region of feature space covers only
positive samples, the region is called a subclass of posi-
tive samples. The basic idea of the subclass method is
that if we can find regions in feature space that satisfy two
properties

(1) regions cover all positive samples, and

(2) they do not cover any negative samples

then the set of regions is a classification system. Regions
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express the area in feature space in which all positive sam-
ples are distributed. Specifically, regions should satisfy
the following two properties:

(1) Exclusiveness: All positive samples must belong to
at least one of the subclasses, and none of the nega-
tive samples may belong to any subclass for positive
samples and

(2) Maximization: Each subclass must include as many
positive samples as possible.

It is vital to the subclass method that how we can find
subclasses that satisfy exclusiveness and maximization.
Kudo el al. introduced an algorithm to find subclasses in
which each subclass is expressed by a hyperrectangle in
feature space, formulated as follows:

Let feature space bed-dimensional Euclidean spaceRd ,
and letX be a subset ofRd . Then, Rect(X) is defined as
the axis-parallel hyperrectangle spanned byX :

Rect�X� �

�
min
x�X

x1�max
x�X

x1

�
��� ��

�
max
x�X

xn�max
x�X

xn

�
�

wherex � �x1�x2� � � � �xd� andx � X . A problem of the
subclass method based on hyperrectangle is to find a sub-
set family of positive sample setD� that satisfies exclu-
siveness and maximization.

Figure 1 shows the subclass method based on hyper-
rectangles. The hyperrectangle of the 3 subclasses found
are

Rect�X1� � �t1� t3�� �s3�s5��

Rect�X2� � �t5� t6�� �s2�s5�� and

Rect�X3� � �t2� t4�� �s1�s4��

These hyperrectangles are expressed by the following de-
cision rules:

Rect�X1�:
If t1 � x1 � t3 ands3 � x2 � s5, then Class is Positive.

Rect�X2�:
If t5 � x1 � t6 ands2 � x2 � s5, then Class is Positive.

Rect�X3�:
If t2 � x1 � t4 ands1 � x2 � s4, then Class is Positive.

The subclass method based on hyperrectangles is closely
related to the generation and reduction of decision rules.

Kudo et al. did not apply the subclass method to prac-
tical problems, because finding subclasses with both ex-
clusiveness and maximization is difficult. We introduce
binary decision trees to the subclass method because bi-
nary decision tree learning has the following advantages:

(1) Learning of a binary decision tree is fast even if the
learning sample set is large.

(2) A binary decision tree expresses decision rules with
many different classes, i.e., a binary decision tree
need not to be calculated for every class.

(3) Our binary decision tree learning algorithm is based
on the divide-and-conquer algorithm, and applied to
parallel and distributed computing.

s5

s4

s3

s2

s1

t1     t2      t3  t4  t5 t6

x1

x2

X1 X2

X3

Fig. 1. Example of subclass method: Black circles denote
positive samples and white circles negative samples. Rect-
angles denote subclasses for positive samples.

3. Binary Decision Trees and Subclasses

How, then do we find subclasses as hyperrectangles in
feature space? The paper selects binary decision trees to
find subclasses. The structure of a binary decision tree is
either

(1) a leaf, including a class, or

(2) adecision node that specifies some test to be carried
out on a single attribute value, with one branch and
one subtree for each possible outcome of the test.

A binary decision tree is used to classify a case by start-
ing at the root and moving down through it until a leaf
is encountered. At each no-leaf decision node, the case’s
outcome for the test at the node is determined and atten-
tion shifts to the root of the subtree corresponding to this
outcome.

Note that decision trees generally have the property
that, for every path from the root to a leaf, an attribute
appears at most only once, meaning no attribute appears
twice on a path. Our aim is to find subclasses from a learn-
ing sample set efficiently, so in our binary decision trees,
an attribute may appear more than once on a path from the
root to a leaf.

The algorithm for generating a binary decision tree is
as follows:

Algorithm: Create Binary Decision Tree (CBDT)

Input: Learning sample setD, with n attributes,m
objects, andc classes.

Output: A binary decision tree that classifies learn-
ing sample setD.

Step 1: If learning sample setD is occupied by only
one classi, then create a leaf node and attach classi
to the leaf. Then return the leaf node.

Step 2: For any attributeai, calculate its classifica-
tion contribution GR�ai�D�. Set amax as the at-
tribute whose classification contribution is maximum
among alln attributes.
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Step 3: Divide learning sample setD into two parts
DL andDR based on the calculation ofGR�amax�D�.

Step 4: Apply this algorithm toDL recursively, then
create subtreeT L corresponding toDL. Also apply
this algorithm toDU recursively, then create subtree
T R corresponding toDR.

Step 5: Create a decision node and attach attribute
amax to the decision node. Also attach two subtrees
T L andT R to the left and right sons of the decision
node.

The measurement of classification contribution is cal-
culated by Shannon’s information. LetD be a learning
sample set,Di be a learning sample set of classi, and
pi � �Di���D�, then the quantity of information ofD, de-
noted byI�D�, is calculated by the following formula:

I�D� ��
c

∑
k�1

pi logc pi . . . . . . . . (1)

where 0� pi � 1 for any classi, andc is the number of
classes.

Based on formula (1), the classification contribution
in CBDT is calculated as follows: LetD be a learning
sample set withn attributes� � �a1� � � � �an�, m objects
� � �o1� � � � �om�, andc classes� � �1� � � � �c�.

(1) Let ai be an attribute of� .

(2) For eachj � 1� � � � �m, which is the number of ob-
jects, do the following steps:

(2.1) First, divideD into two parts

DL
i� j � �o �� � o�ai�� o j�ai��� and

DR
i� j � �o �� � o j�ai�� o�ai���

whereo j is the j-th object ando�ai� is the attribute
value ofai for objecto. It is evident thatDL

i� j �

DR
i� j � /0 andDL

i� j	DR
i� j � D.

(2.2) CalculateI�D�, I�DL
i� j� andI�DR

i� j�.

(2.3) Calculate

GRj�ai�D� � I�D��

�
�DL

i� j�

�D�
� I�DL

i� j��
�DR

i� j�

�D�
� I�DR

i� j�

�
�

(3) GR�ai�D� is defined as the maximum value of
GRj�ai�D�’s, i.e.,

GR�ai�D� � max�GR1�ai�D�� � � � �GRm�ai�T ���

In Step 3 of CBDT, subsetsDL and DR are sub-
setsDL

i� j and DR
i� j whoseGR�ai�D� is maximum among

GR1�a1�D�� � � � �GRm�ai�D�.
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Fig. 2. Learning sample set in example 1: (a) is the learning
sample set; class 1, 2, and 3 samples are denoted by white
circles, squares, and triangles. (b) shows the 7 regions corre-
sponding to the 7 decision rules obtained by the CBDT algo-
rithm. (c) shows regions corresponding to reduced decision
rules.

4. Handwritten Kanji Classification System

This section describes the process of our handwritten
kanji classification. First, consider the following simple
example of generating binary decision trees.

Example 1: Consider the learning sample set in
Fig.2(a). Learning samples are distributed on 2-
dimensional plane, and the learning sample set contains
three classes. Each class is denoted by a white circle, a
square, and a triangle. Algorithm CBDT finds 7 decision
rules for this learning sample set. The region correspond-
ing to a decision rule is shown inFig.2(b). Fig.3 is the
binary decision tree obtained by CBDT.

A decision rule in a binary decision tree may include a
large area that is not filled with samples, so we reduce the
size of each decision rule by finding the maximum and
minimum boundaries of each attribute as follows:

Assume we have the decision rule
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Fig. 3. Binary decision tree in example 1.

If tL
1 � x1 � tR

1 and� � � andtL
n � xn � tR

n , then class isi.

Let D� be the subset of learning sample setD such that
elements ofD� are covered by the decision rule. The de-
cision rule is reduced by referencing subsetD �:

If sL
1 � x1 � sR

1 and� � � andsL
n � xn � sR

n , then class isi,

wheresL
k � min

�x1�����xn��D�

xk andsR
k � max

�x1�����xn��D�

xk. Fig.2(c)

shows regions corresponding to the reduced decision rule
in Example 1.

Our classification has five steps – scanning, prepro-
cessing, feature extraction, classification generation, and
recognition.

Scanning: A handwritten kanji character is scanned
as a binary image.

Preprocessing: The binary image is normalized, and
the normalized image is outlined. Normalizing here
means character size normalization.

Feature Extraction: The image obtained from pre-
processing is translated into an improved directional
element feature [8], which is a feature vector with
196 attributes.

Classification Generation: A classification is gener-
ated as a binary decision tree, then each decision rule
is reduced by referencing the learning samples cov-
ered by the decision rule.

Recognition: An unknown kanji image is classified
as classi when the distance between the feature vec-
tor of the kanji image and a decision rule of classi is
shortest.

In preprocessing, the size of an original binary image
is normalized into a 256�256 pixel binary image by en-
larging or reducing it linearly. For the normalized image,
we extract the outline of the handwritten character in the
image (Fig.4).

(a) (b)

Fig. 4. (a) Normalized image and (b) outlined image.

Fig. 5. Three examples of ETL8.

Table 1. ETL8 specifications.

Number of Kanji Characters 881 characters
Number of Samples 160 par character
Data Format 64�63 pixel binary image

5. Experimental Results

Experimental results of handwriting recognition are
discussed below.

We chose the ETL8 character database [13] as the
benchmark data for evaluating our classification. The
ETL8 character database was collected by the National
Institute of Advanced Industrial Science and Technology,
Japan. ETL8 is commonly used as benchmark data to
compare the performance of off-line Japanese character
recognition algorithms. ETL8 includes binary images of
881 Japanese kanji characters. Images are composed of
64� 63 pixels. ETL8 has 160 sample images for each
kanji character. Fig.5 shows three sample images of
ETL8, andTable 1 lists ETL8 specifications.

To determine the classification rate, we consider the
leave-one-out method [7], which conducts estimation by
learning the entire data set except for the last sample and
testing the last sample.

The following three sample sets are created from the
ETL8 character database:

Data100: We select 100 kanji characters randomly,
then sample set DATA100 becomes the set of all
samples for the 100 kanji characters. Note that
this sample set includes 100�kanji characters� �
160�samples� � 16,000 samples.

Data320: We select 320 kanji characters randomly,
then sample set DATA320 becomes the set of all
samples for the 320 kanji characters. Note that
this sample set includes 320�kanji characters� �
160�samples� � 51,200 samples.

DATA881: This sample set includes all samples of
ETL8, that is, it is identical to the ETL8 character
database, so this sample set includes 140,960 sam-
ples.
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Table 2. Experimental results.

DATA A B C(%) D(%) E(%) F(%)
100 16,000 1,014 93�7 3�86 100 78�0
320 51,200 5,851 88�6 5�67 96�9 70�6
881 140,960 26,557 81�2 7�37 94�1 55�8

“A” is the total number of evaluated samples, which equals to the product of

the number of kanji characters and 160 (the number of testing sample sets).

“B” is the total number of misclassified samples. “C” expresses A�B, the

average classification of the 160 trials. “D” is the standard deviation of the

160 trials. “E” and “F” mean the best and worst classification rates among

the 160 trials.

For sample set DATA100, 160 pairs of learning and
testing sample sets are made as follows:

1. Select one sample randomly for each kanji character.
Then, create a testing sample set with 100 samples
(one sample for each kanji character). Let TEST1
be the testing sample set. The set of all remaining
samples is the learning sample set corresponding to
TEST1. Seti 
 1.

2. Seti 
 i�1. Select one sample randomly for each
kanji character so that selection satisfies the condi-
tion TESTi�

��i�1
j�1TESTj

�
� /0, i.e., no common

sample exists between TESTi and all samples that
selected before. The set of all remaining samples is
the learning sample set corresponding to TESTi.

3. Repeat the above untili equals to 160.

For sample sets DATA320 and DATA881, we also cre-
ated 160 pairs of learning and testing sample sets in a way
similar to DATA100. Note that a leaning sample set in-
cludes 15,900 samples when it is created by DATA100,
50,880 by DATA320, and 140,079 by DATA881.

We conducted experiments for the learning and test-
ing sample sets. Experiments involved 160 trials for each
sample set DATA100, DATA320, and DATA881. Here,
a trial means one pair of a learning process and a testing
process. Results are summarized inTable 2 andFig.6.

Table 2 clarifies the following facts:

1. For any sample data set, there is a trial with more
than 94% classification. When the number of kanji
character is 100, we have a trial with 100% classifi-
cation.

2. A trial with DATA881 has 55�8% classification,
which is very low.

3. When the number of kanji character increases, the
average classification rate decreases and standard de-
viation increases.

Based on the first of the above considerations, we con-
clude that our method have a relatively high classification
rate for handwritten kanji character pattern recognition.

We considered why some samples were misclassified.

Fig. 6. Experimental results: average and standard deviation.

(a) (b)

Fig. 7. Examples of images with noise.

(1) As shown inFig.7, some sample images in ETL8 in-
clude a large number of noise pixels. Our method has
no process that eliminates such noise pixels cleanly.

(2) In our method, an outline image is translated into
a directional element feature vector. As shown in
Fig.4(b), outlining does not make an outline image
whose line is smooth. This may present directional
element feature vectors are not distributed compactly
in feature space, even if their kanji characters are the
same.

(3) A directional element feature vector contains 196 at-
tributes, and each attribute take an integer from 0 to
800. This implies that the number of samples in a
learning sample set is not enough to determine the
ideal subclasses for every kanji characters.

6. Conclusions

We have discussed the application of decision rules to
handwriting pattern recognition, focusing on handwritten
Japanese kanji character recognition. We developed clas-
sification based on learning binary decision trees. We ap-
plied this to the ETL8 character database. Average clas-
sification rates was 93�7% for 100 kanji character, 88�6%
for 320, and 81�2% for 881.

CPU time is several minutes in an environment in
which the platform was IBM/AT Compatible (Pentium
3GHz) and the number of samples were 16,000. The sys-
tem requires more than one hour to complete a learning
process when samples number is about 140,000. CPU
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time thus depends on the size of the binary decision tree,
and increases exponentially with the number of samples.
Parallel and distributed computing is one possible tech-
nique for solving this problem because the CBDT al-
gorithm is based on the divide-and-conquer algorithm,
which enables us to implement parallel and distributed
processing for our method.
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