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A new fuzzy inference model, SIRMs (Single Input Rule
Modules) Connected Fuzzy Inference Model, is proposed
for plural input fuzzy control. For each input item, an
importance degree is defined and single input fuzzy rule
module is constructed. The importance degrees control
the roles of the input items in systems. The model output
is obtained by the summation of the products of the
importance degree and the fuzzy inference result of each
SIRM. The proposed model needs both very few rules
and parameters, and the rules can be designed much
easier. The new model is first applied to typical second-
order lag systems. The simulation results show that the
proposed model can largely improve the control per-
formance compared with that of the conventional fuzzy
inference model. The tuning algorithm is then given
based on the gradient descent method and used to adjust
the parameters of the proposed model for identifying
4-input l-output nonlinear functions. The identification
results indicate that the proposed model also has the
ability to identify nonlinear systems.

Keyword: Fuzzy inference model, Identification, Impor-
tance degree, Plural input fuzzy control, Single input rule
module

1. Introduction

In Mamdani’s conventional IF-THEN fuzzy inference
model,” all the input items of a given system are usually
placed in the antecedent part of each fuzzy rule. If the sys-
tem has only one or two input items, such a structure is
effective because fuzzy rules can visually be designed on a
rule table. According to this structure, however, both the
number of fuzzy rules and the number of parameters in-
crease exponentially with the number of input items. In
large-scale systems, the number of fuzzy rules and the num-
ber of parameters both get very large, and defining the fuzzy
rules becomes a difficult task. To reduce the number of
fuzzy rules and the number of parameters, a hierarchical
fuzzy mode” has been proposed which defines sub-level
fuzzy models with two or three input items in each layer.
For setting of fuzzy rules automatically, on the other hand,
several learning algorithms"*” have been reported.
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In this paper, a new model, SIRMs (Single Input Rule
Modules) Connected Fuzzy Inference Model, is proposed
for plural input fuzzy control. For each input item, degree
of importance is defined according to the contribution of the
input item to the system performance, and a SIRM is con-
structed which has only a single input item in the antecedent
part of its fuzzy rules. The summation of the products of the
importance degree and the fuzzy inference result of each
module is then taken as the output of the proposed model.
Although the architecture is very simple, the proposed
model can solve the above-stated problems of the conven-
tional model.

Ohnishi’s ordinal structure model” is composed of 1-in-
put 1-output fuzzy rules, and each rule is assigned with a
weight indicating the ordinal relation among the rules. In the
fuzzy singleton-type reasoning method,” the weight of a
singleton-type membership function of one output item in
the consequent part of a fuzzy rule can be regarded as the
weight of the whole fuzzy rule; this is essentially as Oh-
nishi’s model. However, the weights in these two cases are
designed, not for each input item, but for the whole fuzzy
rule. From the stand point of control, it is more desirable to
directly strengthen or restrain, not the fuzzy rules, but the
input items, based on intuitive experience. In this model,
independent degree of importance is defined directly for
each input item, and the summation of the products of the
importance degree and the fuzzy inference result of each
SIRM is the output. Therefore, the influence of input items
on the system output can be intuitively realized, in addition
to a major reduction in both the number of fuzzy rules and
the number of parameters. Kuwahara et al.” used two weight
coefficients to combine the fuzzy results of two fuzzy rule
groups. Since the two weights were naturally complemen-
tary to each other, this method can be considered to be a
special case in the model proposed here.

In the next section, the SIRMs connected fuzzy inference
model is explained and its attractive properties are shown.
In the third section, the new model is applied to typical
second-order lag systems, and control simulation results are
indicated in detail. A tuning algorithm is then given, and
identification tests of the nonlinear functions are done. The
last section concludes that the proposed model can improve
control performance, requires fewer fuzzy rules and makes
definition of the fuzzy rules easier.
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2. SIRMs Connected Fuzzy Inference Model

A system with n inputs and 1 output is considered here,
for simplicity. And the simplified reasoning method” is
used. However, the results below are also true for other
inference methods, like the min-max gravity method,” etc.,
and the model can easily be extended to systems with plural
inputs and plural outputs.

2.1. Conventional Fuzzy Inference Model

For systems of n inputs and 1 output, the j-th rule of the
conventional fuzzy inference model can be expressed as
follows:

if AND x;= Aj then y=1¢; ......... (1)
im 1

Here, x; is the i-th variable in the antecedent part and corre-
sponds to the i-th input item of the system, while y is the
variable in the consequent part and corresponds to the output
item of the system. A} is the membership function of the
i-th variable x; in the j-th rule, and ¢; is the real number
output value of the variable y in the j-th rule. j = 1,2, =, m
is the index number of rules, and i = 1, 2, -, n is the index
number of both the input items and the variables of the
antecedent part,

n
When a set of observation values l.t?]h] is given, the

fuzzy grade of the i-th variable in the antecedent part of the
j-th rule is calculated by A/(x), and the agreement h; of the
whole antecedent part of the j-th rule is defined by algebraic
products as Eq.(2). The inference result y’ can then be ob-
tained using Eq.(3) from the simplified reasoning method.

By= ANGE) - A AT @
hi - ¢

e . s ke mR b B AT (3)

S

k=1

As shown in Eq.(1), in the conventional fuzzy inference
model all the input items are usually put into the antecedent
part of each fuzzy rule. Therefore, the maximum number of
fuzzy rules is determined by the number of all the combi-
nations of the membership functions among the different
input items. Even though setting fuzzy rules empirically is
possible for systems with fewer input items, it becomes
extremely difficult to establish fuzzy rules when the number
of the input items increases because all of the input items,

have to be taken into consideration in defining each fuzzy
rule.

2.2. The Proposed Model

To solve the problems of the conventional fuzzy infer-
ence model, such as the necessity of large number of fuzzy
rules and the difficulty in defining fuzzy rules, “‘SIRMs
Connected Fuzzy Inference Model’’ is proposed here. Two
new concepts are introduced in this new model: one is the
so-called SIRM and the other is the importance degree.
SIRM means a module of single input fuzzy rules. Each
SIRM corresponds to only one separate input item and has
that input item in the antecedent part of its fuzzy rules. For
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systems with n inputs and 1 output, the proposed model has
just n SIRMs as shown in Eq.(4).

SIRM-1: [Rl: if xi= A] then yi= o

Here, SIRM-i means the i-th single input rule module, and
R/ is the j-th rule in the SIRM-i. x; corresponding to the
i-th input item of the given system, is the sole variable in
the antecedent part of the SIRM-i. y; is the variable in the
consequent part of the SIRM-i, and y;, -+, y;, ==, yMIVn all
correspond to the same output item of the given system. A}’
is the membership function of the variable x; in the antece-
dent part of the j-th rule of the SIRM-i, while ¢/’ is the real
number output value of the variable y; in the consequent part
of the j-th rule of the SIRM-i. Furthermore, i = 1,2, -, n is
the index number of the SIRMs or the input items, and j =
1, 2, =+, m; is the index number of the rules in the SIRM-i.

If the observation value x;’ of the variable in the antece-
dent part of the SIRM-i is known, then the agreement A, of
the antecedent part of the j-th rule in the SIRM-i simply
becomes Eq.(5), and the inference result y;” of the SIRM-i
is expressed as Eq.(6).

hy= Al(x))

hi- ¢k
e (6)
S #
k=1

Usually, each input item can be considered to play an
unequal role in the system performance. Among the input
items, some may contribute significantly to the system per-
formance while the contribution of others relatively small.
Some input items may improve the performance of the sys-
tem more if their roles are strengthened, while others may
not have a positive influence on the performance if empha-
sized. Therefore, assigning larger weights to those input
items that contribute positively or significantly improve the
system performance, and at the same time assigning smaller
weights to other input items in order to restrain their roles,
would be in accordance with the experts’ experience and
would be expected to improve the total performance of the
system.

However, in the conventional fuzzy inference model all
the input items are treated equally. Although there has been
attempts at tuning the weight of the output value of the
consequent 7Part of fuzzy rule” and assigning weights to
fuzzy rules,” the result is essentially that each input item in
the antecedent part is given an equal weight. To distinguish
the differences of the roles of the input items, an importance
degree is introduced for each input item. The value of the
importance degree of an input item should be determined
according to its contribution to the system performance. A
larger importance degree means that the role of its corre-
sponding input item is strengthened, and a smaller one

Yi=
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means that the role of its corresponding input item is weak-
ened.

Suppose that the importance degree of each input item is
given as wi = 1,2, -, n), the output y° of the proposed
model is then defined as the summation of the products of
the importance degree and the fuzzy inference result of all
the SIRMs. As shown in Eq.(7), the model output is linear
to the reasoning result of each rule module. If the reasoning
result of each rule module is identical, then the ratio of the
contribution of one input item to the model output is con-
trolled by the importance degrees. Therefore, the input items
with larger importance degrees contribute more to the model
output, while the input items with smaller importance de-
grees contribute less to the model output. Moreover, since
the relationship among the input items, defined by the im-
portance degrees, is linearly mapped to the model output, it
is expected that the desired results can be obtained by intui-
tively changing the importance degrees.

n

If the nominal scaling factor of the output item is taken
into consideration in Eq.(7), then one will notice that the
nominal scaling factor of the output item and the importance
degree of one input item together composite the scaling
factor of the variable in the consequent part of the rules of
the corresponding SIRM. And the importance degree is ac-
tually a part of the scaling factor of the variable in the
consequent part of the rules of the corresponding SIRM.
Therefore, tuning the importance degree causes the change
of the scaling factor of the variable in the consequent part
of the rules of the corresponding SIRM. On the other hand,
although the variable of the consequent part from SIRM-1
to SIRM-n is given different names, all the variables corre-
spond to the same output item of the given system. If the
importance degrees are set up to different values from each
other, then the output item actually has different scaling
factors in different SIRMs at the same time. Moreover, if
the nominal scaling factor of the output item is fixed, then
each of these scaling factors of the SIRMs is determined
independently by the corresponding importance degree
which reflects only one input item.

The importance degrees not only connect all the SIRMs
into a united whole but also adjust the roles of the input
items. Since the values of the importance degrees are de-
fined independently, it is not necessary to normalize the
summation of all the importance degrees to 1.0. After the
nominal scaling factor of the model output is determined,
the values of the importance degrees can be set by trial and
error, or by learning algorithm to be given later if training
data are possible.

2.3. Properties of the Proposed Model

In spite of the structure simplicity, the new model has
following attractive properties compared with the conven-
tional fuzzy inference model.

a) Sharp reduction in the numbers of fuzzy rules

Under the conventional fuzzy inference model, the maxi-
mum number of fuzzy rules is decided by the combination
of the membership functions of all the input items. On the
contrary, the new model consists of SIRMs with the same
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Table 1. Maximum number of fuzzy rules.

| Number of Conv;mi;nal Model Proposed Model

; Input Items |
| 2 25 10

i 3 125 . 15

i 4 625 20

[ 5 3125 25

number of the input items, and each SIRM has only one
variable in the antecedent parts of its fuzzy rules. Therefore,
the total number of available fuzzy rules under the new
model equals the summation of the numbers of the member-
ship functions of the input items. This fact leads to a dra-
matic cut in the number of fuzzy rules when the number of
the input items increases. For example, if each input item is
given 5 membership functions, then the maximum number
of fuzzy rules is indicated in Table 1 for the two models
with 2 to 5 input items. Since the number of the parameters
necessary for establishing a fuzzy system depends mainly
on the number of the fuzzy rules, the number of the parame-
ters can also be reduced sharply.

b) Easy design of fuzzy rules

Even for large-scale systems, each SIRM in the new
model has only one variable in the antecedent part of its
rules. Therefore, there is no need to take all the input items
into consideration for each rule. In designing a fuzzy rule,
exploring the relationship between the current input item
and the system performance is sufficient. Consequently, es-
tablishing fuzzy rules is expected to become much easier
than before.

c) Desired results are possible by adjusting the importance
degrees
Although the method® of adjusting the weight of fuzzy
rules in order to control the role of the rules has been re-
ported, the relationship between the control result and the
rules is not very intuitive. From the viewpoint of control,
directly adjusting the role of the input items instead of the
fuzzy rules corresponds better with intuitive experience. The
proposed model assigns the importance degrees directly to
the input items. By adjusting the importance degrees, the
role of the input items can be strengthened or weakened,
thereby either enhancing or weakening the system perform-
ance. For instance, let’s consider the control of a first-order
lag system where the output error and its change are taken
as two input items. If the rise time is to be shortened, then
the importance degree of the output error should be strenght-
end. If vibration is to be suppressed, then the importance
degree with regard to the change in the output error should
be stressed.

d) Easy realization of fuzzy chip

As stated before, the proposed model needs very few
fuzzy rules and parameters. This relaxes the demand on,
memory which used to be a big bottleneck. In addition, since
each antecedent part of a SIRM includes only one variable,
the fuzzy grade of the variable becomes the agreement of
the antecedent part. Hence, the inference time can be sig-
nificantly shortened. All these factors make a fuzzy chip of
this model an easy possibility.
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3. Control Simulations

To verify the effectiveness of the proposed model, the
proposed model is applied to typical second-order lag sys-
tems.

The transfer function of the second-order lag systems
discussed here is expressed as Eq.(8) where A, B, C are co-
efficients and L is the dead time. In the following simula-
tions, three plants” listed below, are selected as the control
objects.

A e A% |
G(S) m B . i s e e e e (8)

Plant (1) A =1.228, B = 0.6380, C = 0.0340, L = 0.0
Plant (2) A =19.54, B = 0.4000, C = 0.5400, L = 0.0
Plant (3) A =0.231, B = 0.0994, C = 0.0064, L = 1.0

To realize fuzzy control of the second-order lag systems,
three input items, i.e., the output error x;, the change x; in
the output error, the second-order change x; in the output
error are usually used as the variables of the antecedent part,
and the change Ay in the manipulated variable is as the
variable of the consequent part. Thus, the fuzzy rules of the
conventional model can be constructed as in Table 2. On
the other hand, the proposed model is composed of three
SIRMs as shown in Table 3. Each SIRM has one of the
three input items as the sole variable in its antecedent. The
sum of the products of the importance degrees and the in-
ference results of the three SIRMs gives the change Ay in
the manipulated variable. Evidently the conventional model
needs 27 rules while the proposed model needs only 9 rules.
Here, the membership functions NB, ZO, and PB are de-
fined in Fig.1. The sampling period is fixed to 0.1s.

For desired value of 60.0, the simulation results are dis-
played separately in Fig.2-4. In the figures, S(65.000,
0.2200, 0.0500, 1.5000) stands for a set of the scaling factors
of the three input items, and the nominal scaling factor of
the change in the manipulated variable. W(5.5110, 2.8856,
1.9000) is a set of the importance degrees for the three input
items. Furthermore, the dotted line represents the desired
value, and the upper and lower curves indicate the controlled
variable and the manipulated variable respectively.

As shown in Fig.2(a), although the conventional model
can approach the desired value without any steady-state er-
ror, it spends about 10s reaching the desired value from the
control start. On the other hand, from Fig.2(b), the proposed
model shortens the time required to reach the desired value
by about 50% of that needed by the conventional model,
with almost no any overshoot.

It can be seen from Fig.3 that even though the conven-
tional model reaches the desired value in less than 6s, the
proposed model further reduces the time required to reach
the desired value by more than 30%, and at the same
time,causes no steady-state error with just a little overshoot.

Since Plant (3) has dead time, controlling such an object
is a little more difficult. In Fig.4(a), under the conventional
fuzzy inference model the control object vibrates after
reaching the desired value. The vibration phenomena can be
understood clearly from the curve of the manipulated vari-
able. Nevertheless, the proposed model entirely eliminates
the vibration although the time required to reach the desired
value is about 10% longer.
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Table 2. Fuzzy rules of the conventional model.

if x; = NB
Consequent Part x3
Ay NB | Z0 PB
' NB -1.000 -1.000 -0.667
x2 70 -1.000 -0.667 -0.333
PB -0.667 -0.333 0.000
if x; = 2O
Consequent Part X3 l'
Ay NB Z0 PB
NB -0.667 -0.333 0.000
[ x 70 -0.333 0.000 0.333
‘ | PB 0000 | 0333 | 0.667
if x, = PB
[ Consequent Part x3
' Ay Ne | zo | B
I . NB 0.000 0333 0.667
x2 Z0 0.333 0.667 1.000
PB 0.667 1.000 1.000

Table 3. SIRMs of the proposed model.

; Antecedent Part Consequent Part

xi(i=1,23) Ayi(i=1,2,3)
NB -1.0
Z0 0.0

PB 1.0 1
NB /0] PB
| | |
-1.0 0.0 1.0

Fig.1. Definition of the membership functions.

Therefore, the above results show that the proposed
model can also significantly improve control performance.
In addition, it can be observed that the scaling factor of the
output error in Fig.2 and Fig.4 was set up very specially.
Since the desired value was 60.0, the same value, 60.0, is
usually taken as the scaling factor of the output error. In the
above simulations, however, such a setting would lead to
bad result using the conventional model. To obtain more
satisfactory results, the above listed scaling factors were
selected by trial and error. And the same sets of scaling
factors, used in the conventional model, were also adopted
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QUTPUT  A=1.228 B=0.638 C=0.034 1-0.00  INPUT OUTPUT  A=1.228 B=0.638 C=0.034 L=0.00  INPUT
100.0 20.00 100.0 20.00
S(65.000, 0.2200, 0.0500, 1.5000) | 5(65.000, 0.2200, 0.0500, 1.5000) |
N(5.5110, 2.8856, 1.8000)

80.04 r15.00 80.04, +15.00
1 Controlled Variable | 1 Controlled Variable [
60.0 4o 7 10.00 60.0 - 10.00
- ,-‘; r -4 “:I::": -
40.04/7% - 5.00 4001 ! - 5.00
f 7\ Manipulated Variable | | it Manipulated Variable |
2004 / VT L 0.00 20,04 L 0.00
0.04L—— . ————+-5.00 0.0 4—— : ; . -5.00
0 10 20 30 40 50 0 10 20 30 40 50

TIME [sec] TIME (sec]
(a) Result by the conventional model (b) Result by the proposed model
Fig.2. Control simulation of Plant (1).

QUTPUT  A=19.540 B=0.400 C=0.540 L=0.00  INPUT OUTPUT  A=19.540 B=0.400 C=0.540 L=0.00 INPUT
100.0 10.00 100.0 10.00
| $(60.000, 0.5000, 0.1000, 0.7900) $(60.000, 0.5000, 0.1000, 0.7900) |

N(1.6400, 0.9400, 0.6600)

80.0+ - 8.00 80.0 - 8.00

i Controlled Variable ] Controlled Variable |
60.04-7 6.00 80.0 6.00
10.0{ L 400 40.0{ - 4.00
20.04 ) Manipulated Variable [ 2.00 20.04: Manipulated Variable | 2.00

-\/“ . -- L
0.0 +—— — — 0.00 0.0+——— r r . 0.00

0 10 20 30 40 50 0 10 20 30 40 50

TIME ([sec] TIME [sec]
(a) Result by the conventional model (b) Result by the proposed model
Fig. 3. Control simulation of Plant (2).

QUTPUT  A=0.231 B=0.099 C=0.006 L=1.00  INPUT OUTPUT  A=0.231 B=0.099 C=0.006 L=1.00  INPUT
100.0 20.00 100.0 20.00
| S(78.500, 0.1500, 0.0080, 1.0000) | $(78.500, 0.1500, 0.0080, 1.0000) |

H(0.4910, 0.2290, 0.2700)

80.04 -15.00 80.0 -15.00
1 Controlled Variable ] Controlled Variable [
60.0 - 10.00 B0.0H-meeeeeens 10.00
40.04 Y, / L5.00  40.04\ 5,00
F oy ,{ani lated Variable | || Y W Variable |
20.0- \7\ v L 0.00 20.04 ]’\1\/ - 0.00

0.0 / : . . ——+-5.00 0.0y r . . -5.00

0 10 20 30 40 50 0 10 20 30 40 50
TIME [sec] TIME [sec])
(a) Result by the conventional model (b) Result by the proposed model
Fig. 4. Control simulation of Plant (3).

in the corresponding simulations in the proposed model, for better results can be achieved.'”
fair comparison under completely the same conditions. If
ordinary settings of the scaling factors are possible even
Vol.1 No.1, 1997 Journal of Advanced Computational Intelligence 27
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4. System Identification

4.1. Tuning Algorithm

As shown above, the fuzzy rules of the SIRMs are rather
easily established. However, when the given system gets
complicated, defining the fuzzy rules and the importance
degrees is difficult. So it would be helpful to be able to
automatically tune all the parameters based on the input-out-
put data of the system. The parameters to be tuned here are
those determining the membership functions of the variable
in the antecedent part, the real number output values of the
variable in the consequent part, and the importance degree
of all the SIRMs.

Suppose that teacher patterns (pairs of input patterns and
desired output values) are given, and the p-th input pattern
and the corresponding desired output value are (x,”, -, x/,
=, x/) and y", respectively. If the actual output value of the
proposed model is y* for the p-th input pattern, then the
evaluation function E” can be defined by Eq.(9). It is well
known by the gradient descent method"™” that the evalu-
ation function will converge to its minimum if searching is
done along the reverse direction of the gradient vector of the
function to all the parameters. Based on this knowledge, the
tuning algorithm can be deduced as follows.

If the simplified reasoning method is used and the mem-
bership function A/ (x)) of the variable in the antecedent part
is defined as Gaussian-type in Eq.(10), the increments of the
importance degree w;, the real number output value ¢; of the
variable in the consequent part, and the parameters a;, b; of
the Gaussian-type membership function of the variable in
the antecedent part are obtained by Eq.(11)-(14), respec-
tively. Here, i = 1, 2, *+, n is the index number of the SIRMs,
j=1,2,, m, is the index number of the rules in the SIRM-
i. Furthermore, ¢ is the current tuning iteration number, a,
B, v, m are the learning coefficients for the different kinds
of the parameters, separately.

E- %(y‘"» I )
2
Allx) = exp[— (x—_bai—] ............ (10)
;
Awft+1)=a- " =y"0)-y@) . ...... (11)

At +1) = B wit) - (7 - y(n)) - R

> hilt)
k=1

Aa(t + 1) = y - wlr) - (" = y"(0)) - (ci(r) = yI())

k() 2- (€ -af)

- bj(1)

> hilt)

k=1
Abj(t +1) = 1 - w(t) - (¥ = y™(0) - (c}(r) - y{(0))
WO [ -a))

a

m

> hi(1)
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4.2. Identification Simulations

Identification ability is also an important index for meas-
uring a new model. To show the identification ability, the
proposed model is utilized to identify two 4-input 1-output
nonlinear functions” listed below. All of the 4 inputs are
limited to [-1.0, +1.0], and the output is restricted into [0.0,
1.0].

(F1) y=@2'x+4-3+0.1)’/74.42+
(3-& ™ +2-et %)% -0.077)/4.68

(F2) y=(2-x;,+4-3+0.1)*/37.21
(2 - sin(m - x;3) + cos(m-x;) +3)/ 6

Since there are 4 inputs in the identification functions,
the proposed model has to arrange 4 SIRMs, each corre-
sponding separately to one of the 4 inputs. On the universe
of discourse of each input item, 5 Gaussian-type member-
ship functions are initially defined such that the adjacent
membership functions cross over at the fuzzy grade 0.5. All
of the real number output values of the variable in the con-
sequent part of each SIRM are initialized to 0.0. Further-
more, the initial values of the importance degrees for the
input items are all set to 0.25.

The above tuning algorithm is then used to adjust the
parameters for the identifier. Given a certain number of
teacher patterns, the tuning algorithm continues searching
until the following mean squared error D is less than a
specified threshold. Here, the learning coefficients a, f, y,
n are separately selected as 0.10, 0.10, 0.01, 0.01. After the
tuning is finished, test patterns are inputted into the identi-
fier. The mean squared error of the same Eq.(15) for all the
test patterns is then calculated as the evaluation error. In
addition, the maximum of the absolute values of the differ-
ences between the desired output values and the actual out-
put values is indicated as the maximum error.

For the two identification functions, the identification
simulation is performed using 10 trials each. In every trial,
20 teacher patterns and 20 test patterns are generated at
random. For the threshold 0.001, the identification results of
the two functions are shown separately in Table 4 and 5. In
Table 4, the average iteration number, the average evalu-
ation error, and the average maximum error are about 68,
0.0061, and 0.1585, respectively. In Table 5, the average
values become 80, 0.0056, and 0.1827, respectively. From
either of the two tables, it can be seen that the tuning con-
verges fast; the evaluation error and the maximum error are
small and stable.

Further, the proposed model is also tested using exactly
the same data as Shi et al.” For the identification function
(F1), the proposed model produces an evaluation error
0.0031 and a maximum error 0.1107, while the evaluation
error and the maximum error shown by them were 0.0063
and 0.1618. For the other function (F2), the proposed model
obtains the evaluation error 0.0031 and the maximum error
0.1734, while theirs, the evaluation error 0.0069 and the
maximum error 0.1939. Compared with their results, the
identification results of the proposed model apparently can
be said to have, at least, the same precision. More important,
the proposed model used only 20 fuzzy rules, while their
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Table 4. Identification result of (F1).

Trial No. Iteration Evaluation Maximum

Number Error Error

1 78 0.0070 0.1718
2 85 0.0048 0.1742
3 98 0.0075 0.1875
k3 94 0.0050 0.1254
5 29 0.0084 0.1917
6 65 0.0048 0.1157
7 58 0.0043 0.1575
8 43 0.0058 0.1367
9 80 0.0044 0.1481
10 47 0.0091 0.1766

Table 5. Identification result of (F2).
Trial No. . Iteration Evaluation Maximum

J Number Error Error

1 ' 107 0.0062 0.2069
2 7} | 00072 0.1638
3 44 | 00043 0.1661
4 115 | 0.0050 0.1616
3 85 [ 0.0063 0.1508
6 35 T 00048 0.1798
7 46 | 0.0054 0.1738
8 45 L 0.0049 0.2382
9 93 0.0050 0.1897
10 158 0.0068 | 0.1963

method required 625 fuzzy rules.

The proposed fuzzy inference model seems weak for
nonlinear systems. But through tuning, each rule module
comes to have a complicated nonlinear relationship between
its input and output. And furthermore, the importance de-
grees also help to form complex relationship among the
input items and the output item. These two operations elicit
the nonlinearity of the proposed model and create a different
input-output characteristic from that of the conventional
model. As a result, the proposed model has the ability to
rather accurately identify systems with strong nonlinearity.

5. Conclusions

The SIRMs Connected Fuzzy Inference Model was pro-
posed for plural input control systems. The model consists
of SIRMs of the same number as the input items. Each
SIRM has only one variable in the antecedent part of its
rules. An importance degree is also defined for each input
item. The importance degrees adjust the roles of the input
items according to their contribution to the system perform-
ance. The model output is obtained by summing the prod-
ucts of the importance degree and the fuzzy inference result
of each SIRM.

The model was first applied to typical second-order lag
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SIRMs (Single Input Rule Modules)

systems. Compared with the conventional fuzzy inference
model, the simulation results show that the proposed model
can significantly improve control performance, besides sim-
plifying the design of the fuzzy rules, and can dramatically
reduce both the number of fuzzy rules and the number of
parameters. The tuning algorithm was then given based on
the simplified reasoning method and the gradient descent
method. Finally, the tuning algorithm was used to adjust the
parameters of the proposed model in order to identify 4-in-
put 1-output nonlinear functions. The identification results
indicate that the proposed model also has the ability to iden-
tify nonlinear systems.
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