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Herbaceous vegetation on riverdikes plays an impor-
tant role in preventing soil erosion, which, otherwise,
may lead to the collapse of riverdikes and conse-
quently, severe flooding. It is crucial for managers to
keep suitable vegetation conditions, which include na-
tive grass species such as Imperata cylindrica, and to
secure visibility of riverdikes for inspection. If man-
agers can efficiently find where suitable grass and un-
suitable forb species grow on vast riverdikes, it would
help in vegetation management on riverdikes. Classi-
fication and quantification of herbaceous vegetation is
a challenging task. It requires spatial resolution and
accuracy high enough to recognize small, complex-
shaped vegetation on riverdikes. Recent developments
in unmanned aerial vehicle (UAV) technology com-
bined with light detection and ranging (LiDAR) may
offer the solution, since it can provide highly accurate,
high-spatial resolution, and denser data than conven-
tional systems. This paper aims to develop a model to
classify grass and forb species using UAV LiDAR data
alone. A combination of UAV LiDAR-based structural
indices, V-bottom (presence of vegetation up to 50 cm
from the ground) and V-middle (presence of vegeta-
tion 50–100 cm from the ground), was tested and val-
idated in 94 plots owing to its ability to classify grass
and forb species on riverdikes. The proposed method
successfully classified the “upright” grass species and
“falling” grass species / forb species with an accuracy
of approximately 83%. Managers can efficiently pri-
oritize the inspection areas on the riverdikes by using
this method. The method is versatile and adjustable in
other grassland environments.
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1. Introduction

Frequent and severe flooding has been recently reported
in Japan. Riverdikes are extremely large and long river

facilities that are built to protect human life and assets
from flooding. River offices, which are locally set up
throughout Japan by the Ministry of Land, Infrastructure,
Transport and Tourism, are in charge of the management
of riverdikes. Herbaceous vegetation on riverdikes plays
an important role in preventing soil erosion, which can
lead to the collapse of riverdikes and, consequently, severe
flooding. It is crucial for managers to maintain suitable
vegetation conditions, such as the native grass species Im-
perata cylindrica, and to secure the visibility of riverdikes
for safety inspections. However, a recent reduction in the
management budget makes this difficult and has resulted
in the spread of the invasive forb species, such as Sol-
idago altissima, which grow to more than 1 m in height
with broad leaves and physically block the visibility of
riverdikes [1]. If managers could efficiently determine the
areas on vast riverdikes where suitable grass and unsuit-
able forb species grow, it would help simplify vegetation
management on riverdikes.

Classification and quantification of herbaceous vegeta-
tion on riverdikes using remote sensing is a challenging
task. It requires a spatial resolution and accuracy high
enough to recognize small, complex-shaped vegetation
on the steep slopes of riverdikes. Recent developments
in unmanned aerial vehicle (UAV) technology may have
the potential of solving this problem. Data can be ac-
quired more frequently and flexibly using UAVs and with
a higher spatial resolution (of the order of centimeters) in
a cost-effective manner compared with conventional air-
borne data acquisition using manned aircrafts (e.g., [2]). It
is also a non-destructive method for deriving plant param-
eters over large areas, unlike traditional destructive field
measurement techniques [3].

For example, Sandino et al. [4] detected invasive
grasses on arid lands using UAV RGB imagery and
gradient-boosted decision trees. Buffel grass and spinifex
were successfully classified, with a detection rate higher
than 96%. However, the study site was flat and arid, with
relatively sparse vegetation. It would be difficult to ap-
ply this method to herbaceous vegetation on riverdikes,
where thick, tall, and various vegetation grows on a more
complex topography. Based on a combination of struc-
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ture from motion and multiview stereo techniques, pas-
sively acquired UAV imagery can generate 3D informa-
tion. It has been reported that the sward height derived
from UAV imagery is a promising parameter for estimat-
ing grassland biomass [5–11]. Most of these studies were
conducted in a relatively flat environment, and the diffi-
culty in application to riverdikes remains because topog-
raphy affects the accuracy of determining the height from
UAV imagery [12].

UAV combined with light detection and ranging
(LiDAR) is another emerging technique. LiDAR is an ac-
tive sensing technology that emits laser pulses and mea-
sures the distance between the sensor and the illuminated
target. This technology provides 3D information regard-
ing the target. Conventional airborne LiDAR, which uses
manned aircrafts as a platform, is well documented for
its utility in forestry applications (e.g., [13–17]). Use of
UAV LiDAR is relatively new in airborne laser scanning.
The innovative feature of this system is the acquisition
of data from a relatively low flying altitude (< 100 m)
with a more customized flight plan and lower cost. It
provides highly accurate and denser data than the con-
ventional system, which can be used for herbaceous veg-
etation analysis. Wang et al. [18] developed a model
for the canopy height and fractional cover of a cattle-
grazing grassland to estimate above-ground biomass us-
ing UAV discrete LiDAR (Velodyne HDL-32E). The au-
thors pointed out that the LiDAR-derived indices are not
very accurate for grassland ecosystems, but can be cali-
brated using field data to estimate the actual canopy height
and fractional cover. In their study, the average point den-
sity was not very high (26 points/m2), which might ex-
plain why the indices did not work very well. With a
denser point cloud (460 points/m2), Miura et al. [19, 20]
utilized UAV waveform LiDAR (RIEGL VUX-1) to pro-
duce a herbaceous vegetation height map of a riverdike
with a spatial (vertical and horizontal) resolution of 5 cm
and revealed the vertical structure of the herbaceous veg-
etation using UAV LiDAR-based structural indices. The
indices could be used for distinguishing between the “up-
right” grass species and “fallen” grass or forb species by
using this process.

Therefore, in this paper, we evaluate and validate the
utility of UAV LiDAR-based indices for classifying grass
and forb species on riverdikes. A model is developed to
classify grass and forb species and validated by compar-
ing it with the classifications by a vegetation specialist.

2. Methods

2.1. Study Area

The study area is located in the high-water channel
of the Tone River, 30 km northeast of Tokyo, Japan
(Fig. 1). The mean annual precipitation and tempera-
ture are 1344 mm and 14.1◦C, respectively, at the nearby
Ryugasaki Meteorological Station. The section of the
riverdike selected for the study was approximately 1 km

Fig. 1. Studied section of the riverdike.

Table 1. Specifications for LiDAR data acquisition.

Sensor RIEGL VUX-1
Pulse repetition frequency 5 kHz
Scan angle 330◦

Platform altitude 30 m
Flying speed 15 km/h
Overlap between courses 50%–60%
Average point density 460 points/m2

Acquisition date August and October 2017

long with a width of 40 m and a height of 7 m. The herba-
ceous vegetation covers both slopes of the riverdike. Tall
herbaceous vegetation, such as Imperata cylindrica (grass
species) and Solidago altissima (forb species), which
grow to more than 1 m in height, is dominant in this area.
Mowing was carried out twice a year, in mid-spring and
late summer, during our study period as part of the vege-
tation management by the Tonegawa-Joryu River Office,
Ministry of Land, Infrastructure, Transport and Tourism.

2.2. UAV LiDAR Data
LiDAR data were acquired using an UAV system of

Nakanihon AirService and Kohata Inc., TOKI, and it
consists of a Gryphon Dynamics GD-X8-SP platform,
RIEGL VUX-1 laser scanner, and Nikon Trimble AP20
GNSS/IMU system. This is a waveform system. The data
of the area were collected twice, in August and October
2017, immediately before and after mowing. Table 1 lists
the specifications for laser data acquisition. Ground con-
trol points were surveyed using the RTK-GNSS network
for height validation. The vertical accuracy of the acquisi-
tion was RMSE of 2.1 cm (August) and 3.4 cm (October).

2.3. Classification of Grass and Forb Species
Miura et al. [20] showed the potential of UAV LiDAR-

based indices, V-bottom (presence of vegetation up to
50 cm from the ground) and V-middle (presence of veg-
etation 50–100 cm from the ground) in classifying grass

Int. J. of Automation Technology Vol.15 No.3, 2021 269



Miura, N. et al.

Fig. 2. Plots dominated by (a) forb species, (b) “fallen”
grass species, and (c) “upright” grass species.

and forb species. Therefore, we used the same indices in
this study for verification. This method is based on the
following idea. In an herbaceous vegetation environment,
when some vegetation is present in the middle vegetation
layer, there should be a similar amount or more vegeta-
tion present in below layer, which is the bottom vegeta-
tion. One exception is that flowers or ears of grasses can
dominate the middle layer and exceed the amount of veg-
etation in the bottom layer. However, we confirmed that
there were no such cases in the data. In our analysis, some
plots showed too few UAV LiDAR returns in the bot-
tom vegetation layer compared with the number of returns
in the middle vegetation layer. The authors found that
the plots with this anomaly were dominated by the forb
species (Fig. 2(a)) and “falling” grass species (Fig. 2(b)),
whereas plots without this anomaly were dominated by
the “upright” grass species (Fig. 2(c)). This suggests that,
in the plots with this anomaly, the broad leaves of the forb
species or the sides of leaves of the “falling” grass species
physically prevent UAV LiDAR penetration into the bot-
tom vegetation layer when they are abundantly present
in the middle vegetation layer. Therefore, if V-middle
is greater than V-bottom, the dominant species of the
plot can be classified as a “falling” grass species or forb
species. In contrast, if V-middle is the same or lower than
V-bottom, the dominant species can be classified as the
“upright” grass species.

In order to test this hypothesis, a circular plot with a
radius of 50 cm was set up on a riverdike point cloud.
A total of 94 test plots were randomly established using
the ESRI’s GIS software, ArcGIS (Fig. 3). For each plot,
the UAV LiDAR-based indices, V-bottom and V-middle,
were calculated in accordance with Miura et al. [20]. In
this method, four types of LiDAR returns are defined.
Type 1 is a singular return, which means that only one re-

Fig. 3. Randomly established 94 test plots (circular dot) on
the riverdike.

turn is recorded from each emitted pulse of energy. Type 2
is the first of many returns, that is, part of the pulse of the
incident energy interacts with a plant facet and is reflected
back to the sensor; however, most of the energy passes
through the plant and interacts with other facets along its
path. Type 3 is intermediate returns, which are the subse-
quent interactions of the pulse described in Type 2. Type 4
is the last of many returns, which is the last pulse returned
to the sensor from an incident pulse. The total number of
returns, T , is expressed as

T =
4

∑
i=1

4

∑
j=1

Ri j, . . . . . . . . . . . . . (1)

where R = UAV LiDAR returns, i = classified layers (1 =
top vegetation, 2 = middle vegetation, 3 = bottom vege-
tation, and 4 = ground), and j = return types (1 = Type 1,
2 = Type 2, 3 = Type 3, and 4 = Type 4).

V-bottom comprises all return types (Types 1–4) from
the bottom vegetation layer; this represents the presence
of bottom vegetation.

V -bottom =
R31 +R32 +R33 +R34

T
=

4

∑
j=1

R3 j

T
. (2)
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Fig. 4. Comparison between UAV LiDAR-based V-bottom
and V-middle of 94 test plots. The value of the indices is
expressed as a percentage.

V-middle contains all return types (Types 1–4) from
the middle vegetation layer; this indicates the presence
of middle vegetation.

V -middle =
R21 +R22 +R23 +R24

T
=

4

∑
j=1

R2 j

T
. (3)

The “upright” grass species is expressed as follows:

V -bottom
V -middle

≥ 1 . . . . . . . . . . . . . (4)

The “fallen” grass and forb species are expressed as fol-
lows:

V -bottom
V -middle

< 1 . . . . . . . . . . . . . (5)

These are validated using the groundtruth data.

2.4. Groundtruth
The composition of vegetation species changes season-

ally, and we could not collect the groundtruth on-site for
LiDAR data acquired in 2017. As an alternative method,
vegetation species in the test plots were visually classified
by a vegetation specialist using orthoimage data captured
by using a UAV RGB camera on the same day as the UAV
LiDAR acquired in 2017.

3. Results

Figure 4 shows the results of the comparison between
the LiDAR-based V-bottom and V-middle of 94 test plots.
The model classified the “upright” grass species to be
dominant in 19 plots and the “falling” grass species or
forb species dominant in 75 plots. Table 2 presents the
confusion matrix. The true positive rate of the model is
approximately 0.71 for the “upright” grass and 0.84 for
the “falling” grass or forb species. The accuracy of the
model is approximately 83%.

Table 2. Confusion matrix of classification for 94 test plots.

  Model classification 

  Upright” 

grass 

“Falling” 

grass/forb 

Specialist 

“Upright” 

grass 
5 2 

“Falling” 

grass/forb 
14 73 

Fig. 5. Example of plots classified as creeper dominant
(plot 64: creeper 90% and Solidago altissima 10%) by veg-
etation specialist using orthoimage. The area around plot 64
is shadowed, which means herbaceous vegetation is shorter
than in the surroundings. Plot 31 is dominated by Solidago
altissima.

4. Discussion

The proposed model successfully classified the “up-
right” grass species and “falling” grass species / forb
species using UAV LiDAR data alone. Managers can ef-
ficiently prioritize the inspection areas on the riverdikes.
Only 16 plots were misclassified. For 14 plots, the model
misclassified the “upright” grass species as being domi-
nant, because V-bottom was greater than V-middle. Three
plots were classified as creeper (forb species) dominant
by the specialist (Fig. 5). The specialist could not identify
the vertical structure of the vegetation based on the or-
thoimage; however, in conjunction with the LiDAR data
analysis, it is assumed that the creeper was thick in the
bottom vegetation layer for these three plots. If small forb
species, such as creeper, are present more in the bottom
vegetation layer than in the middle vegetation layer, the
model can misclassify the dominant species. A source
other than LiDAR data, such as RGB and multispectral
images, may be able to assist in the classification of creep-
ers. This clearly needs further study. Other reasons for
misclassification may be the orthoimage that we used to
collect the groundtruth. In some plots, the image was not
clear, as they were in the shadow on the slope. The spe-
cialist could have misclassified some. Because we used
an orthoimage with a ground sampling distance of 2 cm
for visual classification, images with a higher spatial res-
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olution might solve this problem. However, a vegetation
survey on site would be the ideal approach for gathering
groundtruth.

5. Conclusion

The proposed method using a combination of UAV
LiDAR-based structural indices successfully classified
the “upright” grass species and “falling” grass species /
forb species with high accuracy. This method is versatile
and adjustable in other grassland environments. A com-
bination with spectral imaging might improve the classifi-
cation accuracy; however, this clearly needs further study.
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