
Model-Based Deterioration Estimation with Cyber Physical System

Paper:

Model-Based Deterioration Estimation with
Cyber Physical System

Tomoaki Hiruta∗,† and Yasushi Umeda∗∗

∗Research & Development Group, Hitachi Ltd.
7-1-1 Omika-cho, Hitachi, Ibaraki 319-1292, Japan

†Corresponding author, E-mail: tomoaki.hiruta.dp@hitachi.com
∗∗Research into Artifacts, Center for Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan

[Received April 26, 2020; accepted June 23, 2020]

A key aspect of life cycle management for pursuing
sustainability is machine condition prognosis, which
requires a condition monitoring system that estimates
machine system deterioration to assist engineers in de-
termining which maintenance actions to take. Conven-
tional data-driven methods such as machine learning,
have two issues. One is data dependency. The accu-
racy of a data-driven method depends on the data vol-
ume because a data-driven method builds a classifica-
tion model on the basis of historical data as training
data. However, it is difficult to acquire enough data on
all deterioration modes, which requires a long time,
because deterioration modes are diverse, and some of
them rarely happen. The other issue is interpretabil-
ity. When a condition monitoring system using a data-
driven method sends the degree of deterioration (DoD)
of the machine system to maintenance engineers, they
have difficulty in understanding the results because
the method is a black box. The objective of this paper
is to address these two issues. We propose a model-
based method that simulates machine system deteri-
oration with a cyber physical system (CPS). Model-
based methods address these issues in the following
manner. First, the methods can simulate the progress
of deterioration from an initial condition to failure to
estimate the DoD. Second, the methods employ math-
ematical models that represent machine systems. En-
gineers create such mathematical models (which we
call “physical models”) by referring to various kinds
of knowledge like design information and the result of
failure mode and effects analysis. A physical model al-
lows us to reason about a machine system to address
interpretability. For dealing with machinery that has
multiple operation modes, we introduce a state space
to clarify the relationship among input, observable
state variables, and DoD in a physical model. The CPS
estimates DoD by comparing observed data with simu-
lated data in the state space. In our case study, we eval-
uated our proposed method with a hydraulic pump of
a mining machine. First we created a physical model
with Modelica, which is a multi-domain modeling lan-
guage. Then, the method constructed the state space
by simulating deterioration with the physical model
given all combinations of inputs and DoD. After that,

we showed that the estimated DoD tended to increase
until the hydraulic pump was replaced, using the ob-
served data from an actual mining machine. As a re-
sult, the experimental results revealed that the pro-
posed method succeeded in identifying the DoD with
observed data of the hydraulic pump of a mining ma-
chine.

Keywords: maintenance, deterioration, cyber physical
system

1. Introduction

Life cycle engineering [1, 2] is a key concept for
promoting environmentally sustainable practices among
manufacturers because maintenance in the middle of a
product’s life cycle is essential for efficiently extending its
lifetime. Much recent research has focused on condition-
based maintenance, which contributes to increasing the
availability of machines and reducing maintenance costs
through the use of a condition monitoring system [3–5].

In condition-based maintenance, a condition monitor-
ing system assists maintenance engineers in determin-
ing the right maintenance actions to be taken at the right
time [6, 7]. The core task of recent condition monitoring
systems is to estimate the deterioration of machine sys-
tems with data collected from machine systems. Many
data-driven methods have been proposed for estimating
deterioration. An example is machine learning based
anomaly detection, which identifies unusual machine con-
ditions that do not conform to expected machine sys-
tem behavior [8]. In this method, first, a machine learn-
ing technique creates patterns for a machine system un-
der normal conditions. Then, in operation mode, it de-
tects differences from these patterns as machine system
condition anomalies [9, 10]. For condition-based main-
tenance of medical equipment, data scientists designed
a data analytics process for predicting equipment failure
with equipment operation logs and machine learning al-
gorithms [11].

However, such data-driven methods have two issues.
One is data dependency. The accuracy of a data-driven
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method depends on the data volume. However, it is dif-
ficult to acquire enough data on all deterioration modes,
which requires a long time, because deterioration modes
are diverse, and some of them rarely happen. For exam-
ple, if deterioration mode “A” happens at 10−4 percent per
hour, it would take 1.14 years to acquire one sample for
this mode. For dealing with various kinds of deteriora-
tion modes, data acquisition requires more time than the
product lifetime.

The other issue is interpretability. When a condition
monitoring system using a data-driven method sends the
degree of deterioration (DoD) of the machine system to
maintenance engineers, the engineers have difficulty in
understanding the reason why the system detect that DoD,
because the method is a black box.

Model-based methods address these issues in the fol-
lowing manner. First, the model-based methods simu-
late machine behavior as deterioration progresses from
an initial condition to failure. This can avoid the long-
time data collection. Second, the model-based methods
employ mathematical models that represent a mechani-
cal system, so they allow us to reason about the system.
Hence, we take an model-based approach.

Conventional model-based methods have been pro-
posed for simple machine elements with experimental
data rather than actual operational data. One example is a
bearing-faults model that provided simulated data for cre-
ating a fault classification, which is a supervised machine
learning method [12]. Another example is an electric cir-
cuit deterioration model that was utilized with a causal
network and experimental data [13]. Furthermore, one ex-
ample of model-based methods utilized simulated data of
aircraft engine modules for the damage propagation [14].

However, few researchers have dealt with machine sys-
tems rather than machine elements with observed data
collected from actual machines. For dealing with ob-
served data of machine systems in a model-based meth-
ods, we need to address two issues. First, there is a gap
between observed data and simulated data, which leads
to inaccurate DoD estimation. Second, a machine system
has multiple operation modes. It is difficult to recognize
operation modes with a time series of observed data.

In this paper, we propose a model-based method for
estimating deterioration with a cyber physical system
(CPS) [15]. We describe mathematical models (we call
“physical models”) with mathematical equations with
multi-domain modeling language to simulate normal and
deteriorated machine behavior. To fill the gap between
observed and simulated data, we utilize a methodology of
combining observed and simulated data called “data as-
similation” [16]. Data assimilation is used to estimate
the state of a complex system such as the atmosphere
from observed data and physical models [17]. Specifi-
cally, we estimate the attributes of a physical model for
matching simulated data to observed data as described in
Section 2.2.4.

Moreover, the method introduces a state space with
simulated and observed data to deal with multiple oper-
ation modes of machine systems such as power plants,

Fig. 1. Simulation with discretized attributes of deteriora-
tion to create state space.

medical equipment, mining machinery, automobiles, and
motors.

The paper is structured as follows. Section 2 proposes
the deterioration estimation method with CPS. Section 3
shows a case study of a hydraulic pump, and the pro-
posed method is evaluated with observed data from the
physical world. Section 4 discusses the contributions to
maintenance operation and the limitations of the proposed
method. Section 5 concludes this paper.

2. Model-Based Deterioration Estimation
Method

Our approach integrates a physical model of machine
system in the cyber world and observed data in the physi-
cal world to address the issues with data dependency and
the interpretability of deterioration estimations. Specifi-
cally, we take the approach as shown in Fig. 1. First, we
discretize the progress of deterioration for a machine sys-
tem. Then we construct state space by executing a model-
based simulation with the discretized values of deteriora-
tion. The state space is used for estimating deterioration
with observed data.

Our method consists of two phases: preparation and ex-
ecution. After constructing the CPS for estimating deteri-
oration in the preparation phase, engineers create a phys-
ical model and construct the state space. Then, in the ex-
ecution phase, the CPS identifies the DoD by positioning
the observed data from the machine in the state space.

2.1. Cyber Physical System for Deterioration
Estimation

Figure 2 shows the CPS for estimating deterioration
for condition-based maintenance. The cyber world con-
tains the physical model and the state space. When the cy-
ber world receives observed data from the physical world,
it estimates the DoD of the machine system in the state
space.

In the physical world, when maintenance engineers re-
ceive information about the DoD of a machine system,
they send work orders to maintenance workers, who con-
duct maintenance on the machine system.
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Fig. 2. Cyber physical system for estimating machine system deterioration.

2.2. Preparation Phase
The preparation phase consists of four sub-phases:

(a) modeling, (b) simulation, (c) state space creation, and
(d) validation as shown in Fig. 2.

2.2.1. Modeling
In the modeling phase, engineers create a physical

model by referring to various kinds of knowledge like de-
sign information and the results of failure mode and ef-
fects analysis (FMEA) [18].

The physical model represents the machine system be-
havior as shown in Eqs. (1) and (2).

ẋxx (t) = f (xxx(t),uuu(t), ppp,ddd), . . . . . . . . (1)

ḋdd = g(τ,,,ddd,uuu(τ),xxx(τ) , ppp). . . . . . . . (2)

where uuu (t) = [u1 (t) , . . . ,uM (t)]T represents the input
vector of the machine system in the physical model at
time t; M represents the number of input parameters;
xxx(t) = [x1 (t) , . . . ,xN (t)]T represents the state variable
vector at time t; N represents the number of variable
parameters; ppp represents the attributes of the physical
model; ddd = [d1, . . . ,dL]T represents the attributes of dete-
rioration, which is defined as DoD; L represents the num-
ber of attributes of deterioration; f (·) represents the be-
havior of the machine system in operation; g(·) is a func-
tion representing deterioration progress of the physical
model. In Eq. (2), ddd depends on time τ , uuu(τ), xxx (τ), and
ppp.

We assumed that time t in Eq. (1) represents the time
for the operation of the machine system. On the other
hand, time τ in Eq. (2) represents a longer time for the de-
terioration progress. Hence, Eq. (1) deals with ddd as con-
stant, and ddd changes according to time and machine oper-
ation as shown in Eq. (2). Moreover, we introduce yyy (t) =
[y1 (t) , . . . ,yO (t)]T representing the observable state vari-
able vector, yyy (t) = {y‖y ∈ xxx(t),y is observable}. O rep-
resents the number of observable state variable parame-

ters. Note that we assume uuu(t) is also observable in this
paper.

In the modeling sub-phase, engineers first describe the
physical model. Then, they select the target failure modes
related to deterioration that have critical impacts and high
probability by using an FMEA table and describe them
as ddd. For example, when the target failure mode is the
wear of a brake pad, its ddd can be represented as a friction
coefficient.

2.2.2. Simulation
In the simulation, for acquiring all possible values of

observable state variable vector yyy (t), the engineers simu-
late all possible patterns of the values of input vector uuu(t)
and ddd in the cyber world.

Considering the calculation cost, the engineers dis-
cretize values of input vector uuu(t) and ddd. Specifically,
um(t,km) represents the km-th bin of input parameter um
(km = 1, . . . ,Km), and dl(kl) represents the kl-th bin of
DoD dl (kl = 1, . . . ,Kl). The physical model simulates the
observable state variable vector yyy (t,k,kl) given all combi-
nations of the k-th input vector uuu(t,k) and the kl-th DoD
dl(kl).

2.2.3. State Space Creation
The observable state variable vectors yyy(t) and state

variables xxx(t) are affected by uuu(t) and ddd. Assuming that
the operation mode of a machine system (e.g., a boiler) is
constant, we can estimate ddd only with yyy (t). However, in
the case of machinery that has multiple operation modes
(e.g., a mining machine), it is necessary to focus on the re-
lationship between uuu(t) and yyy(t) for estimating ddd. There-
fore, we introduce the state space to clarify the relation-
ship among input, observable state variables, and DoD.

In state space creation, the engineers execute projection
from uuu(t) and yyy(t) into the state space. As a result, ma-
chine system behavior is expressed as a hyperplane in the
state space. Fig. 3 shows an overview of projection from
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(A) Time-series data (B) State space

Fig. 3. Overview of projection from simulated observable
state variables yyy(t) and input uuu(t) (A) into hyperplanes in
state space (B).

simulated observable state variables yyy(t) and input uuu(t)
(Fig. 3(A)) into hyperplanes in the state space (Fig. 3(B)).
Here, SSS(ddd,uuu,yyy) represents a hyperplane simulated with a
physical model given ddd. In the state space, the DoD of
a machine system is expressed as a change in the hyper-
plane as shown in Fig. 3(B).

2.2.4. Validation

In the validation phase, engineers calibrate attributes ppp
with historical data under normal machine behavior (ddd =
dddnnnooorrrmmmaaalll). The engineers assign the attributes ppp to mini-
mize the difference dddiiisss(dddnnnooorrrmmmaaalll) between the hyperplane
SSSooo (uuu,yyy) of the historical data and that SSS (dddnnnooorrrmmmaaalll ,uuu,yyy,) of
the simulated data with Eq. (3).

dddiiisss(ddd) =
√

∑
uuu,yyy

nnnuuu,yyy (SSSooo (uuu,yyy)−SSS (ddd,uuu,yyy))2 . (3)

where nnnuuu,yyy represents the number of observed data as-
signed to the hyperplane SSSooo (uuu,yyy). Observed data as-
signed to grids on the hyperplane SSSooo (uuu,yyy) are imbal-
anced. To deal with imbalanced data, we utilize weighed
sum with nnnuuu,yyy in Eq. (3).

2.3. Execution
In the execution phase, the CPS identifies the DoD with

observed data and the state space. Observed data is col-
lected from the machine system through information and
communications technologies (ICT) in the CPS.

To find the DoD dddmmmiiinnn of the smallest distance between
the hyperplane SSSooo (uuu,yyy) of the observed data and that
SSS (ddd,uuu,yyy) of the simulated data, the optimization problem
can be formalized as follows:

dddmmmiiinnn = argmin dddiiisss(ddd)
s.t. dl ∈ {dl(1), . . . ,dl(Kl)} , ∀uuu . . . . (4)

In this paper, the engineers select dddmmmiiinnn with an exhaus-
tive search of discretized input uuu, yyy and ddd. Fig. 4. shows
an overview of the calculation between the observed and
simulated data in the state space. The difference dddiiisss(ddd)
in Eq. (3) is calculated from input of observed data in the
state space (nnnuuu,yyy > 0).

Fig. 4. Finding suitable dddmmmiiinnn after calculating difference
dddiiisss(ddd) between observed and simulated data in state space.

3. Case Study

We evaluated our proposed method with a hydraulic
pump of a mining machine. The pump can transform ro-
tational energy from an engine into hydraulic energy to
control a connected actuator. If this pump breaks down,
the machine will stop, which would lead to low availabil-
ity. Therefore, condition-based maintenance is needed.

3.1. Hydraulic Pump and its Modeling
In this case study, the type of hydraulic pump was

a variable displacement pump with a swash plate that
operates a displacement axial piston to control the flow
rate [19].

Table 1 shows the input, observable state variables, at-
tributes and DoD of the physical model based on Eqs. (1)
and (2). Fig. 5 shows the mechanism of the hydraulic
pump. The input to the hydraulic pump is the time-series
data of rotational speed u1(t) from the engine and the de-
sired pump pressure u2(t) controlled by the mining ma-
chine operator. The hydraulic pump state variables were
the flow rate, pump pressure, drain flow rate, and push-
ing area controlled by the swash plate. We manually set
attributes based on design information of the hydraulic
pump. Moreover, on the basis of discussion with domain
engineers and the mechanism shown in Fig. 5, we selected
drain pressure as the observable state variable of the hy-
draulic pump yyy (t). Drain pressure is the pressure from
internal oil leakage from the pump. Note that the pump
pressure is not an indicator for identifying DoD because
the controller controls the swash plate angle to achieve the
desired pump pressure. As a result, the pump pressure is
not directly influenced by DoD. Drain pressure is observ-
able in the physical world and is affected by the pump
volumetric efficiency ηv described below.

In this case study, we focused on the wear of a piston
as the target failure mode on the basis of discussion with
domain engineers. We decided to describe the degree of
piston surface wear as the pump volumetric efficiency ηv.
Namely, d1 was defined as (1−ηv) in the physical model.
When ηv was close to 0 (d1 was close to 1), the piston
condition reaches failure.

3.2. Construction of Physical Model
We created the physical model with Modelica [20, 21],

which is a multi-domain modeling language as shown in
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Table 1. Parameters of physical model of hydraulic pump.

Category Variables Description

u1 (t)
Rotational speed
from engine.

Input Desired pump
u2 (t) pressure from

operator.
x1 (t) Flow rate.
x2 (t) Pump pressure.
x3 (t) Drain flow rate.

State variables Pushing area
x4 (t) controlled by swash

plate.
x5 (t) Drain pressure.

d1 = 1−ηv
ηv represents pump

DoD d1 volumetric efficiency
that ranges from 0.0
to 1.0.

Observable
y1 (t) Drain pressure.

state variables

Attributes of the

- Gain of controller.

hydraulic pump

- Mathematical
ppp relationship between

pump pressure and
flow rate of piston.

Fig. 5. Mechanism of hydraulic pump.

Fig. 6. Modelica allows us to describe multi-domain com-
ponents as a physical model. In this case study, the physi-
cal model of the hydraulic pump consisted of a controller
and mechanical components, i.e., a swash plate and pis-
ton.

To reduce the noise from historical and observed data,
in preparing data, we calculated the average value of the
historical and the observed data with a time window.

Finally, we validated the physical model by minimizing
dddiiisss(dddnnnooorrrmmmaaalll) between the hyperplane SSS (dddnnnooorrrmmmaaalll,uuu,yyy) of
the simulated data and that SSSooo (uuu,,,yyy) of the historical data
for the normal machine condition (DoD ddd = dddnnnooorrrmmmaaalll) with
Eq. (3). In this study, we assumed that dddnnnooorrrmmmaaalll was 0.05
(dddnnnooorrrmmmaaalll = 1− 0.95), because the pump volumetric effi-
ciency ηv of a new hydraulic pump is 0.95 [19]. Fig. 7
shows a relationship between the difference dddiiisss(ddd) and
DoD ddd. The difference dddiiisss(ddd) is minimum when DoD ddd

Fig. 6. Pheysical model of hydraulic pump with Model-
ica [20, 21].

Fig. 7. Relationship between the difference dddiiisss(ddd) and DoD
ddd for physical model validation.

is 0.05.
After the validation, we compared the historical and

simulated pump pressure as shown in Fig. 8. Fig. 8(a)
shows time-series data of the observed and simulated data
pump pressure. Fig. 8(b) indicates that the correlation co-
efficient between them was 0.981. This means that the
physical model well represented the pump in the physical
world.

3.3. Simulation of Deterioration
First, we discretized the values of the input and ob-

servable state variables to create hyperplanes in the state
space. In particular, each input variable was discretized
into 10 bins considering the calculation cost and data
distribution. Hence, the input data had 100 patterns of
u1 (t,k1) and u2 (t,k2) (k1,k2 = 1, . . . ,10). For example,
when the observed engine rotational speed u1(t) ranges
from 0 to 3000 rpm, each bin has 300 rpm buckets. And
engine rotational speed u1(t) from 0 to 300 rpm was rep-
resented as u1(t,1).

We prepared 20 patterns of DoD from 0.05 (normal)
to 0.40 (failure) according to the specifications of the hy-
draulic pump.

After discretizing the input and DoD, the phys-
ical model simulated the observable state variables
yyy(t,ku1,ku2,kl) given all combinations of the ku1-th and
ku2-th inputs and the kl-th DoD d1.

3.4. State Space Creation
The simulated data of each DoD d1 was mapped onto

the hyperplane SSS (d1,uuu,yyy) in the state space. In this study,
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(a) Time-series data of observed and simulated pump
pressure.

(b) Scatter plot showing cor-
relation between observed and
simulated pump pressure.

Fig. 8. Time-series data and scatter plot of main pump pressure for physical model validation.

(a) d1 = 0.05 (b) d1 = 0.20 (c) d1 = 0.40

Fig. 9. Examples of hyperplanes created by simulated data in state space for each DoD (d1 = {0.05,0.20,0.40}).

the state space had three axes: input rotational speed u1,
desired pump pressure u2, and drain pressure yyy.

Figure 9 shows examples of hyperplanes SSS (d1,uuu,yyy) in
the state space of each DoD d1 = {0.05,0.20,0.40}. The
figure reveals that the hyperplanes in the state space de-
pended on the input, observable state variables, and the
DoD of the hydraulic pump of the mining machine.

3.5. Estimation of Degree of Deterioration
We acquired 116 days of observed data out of 589 days

from an actual mining machine. After the pump broke
down on the 513th day, a maintenance worker replaced it
with a new one.

In accordance with Eq. (3), we calculated the dis-
tance dddiiisss(d1) between the observed data SSSooo (uuu,yyy) from
the dataset and the simulated data SSS (d1,uuu,yyy) of each DoD
d1. Then, we selected the estimated DoD dddmmmiiinnn of each
piece of observed data with Eq. (4).

Figure 10 shows the estimated DoD dddmmmiiinnn over time
with Eq. (4). The x-axis represents the days from the first
day of the observed data. We show that the estimated DoD
tended to increase until the hydraulic pump was replaced.
The broken hydraulic pump was caused by wear of the
piston surface. Then, after the pump was replaced, the
DoD recovered.

These results demonstrate that the proposed method
succeeded in identifying the trend of the deterioration of
the hydraulic pump.

Fig. 10. Relationship between estimated DoD dddmmmiiinnn and days
from first day of observed data.

4. Discussion

Our method dealt with a physical model and hyperplane
created from simulated data in state space.

When the DoD is identified, the physical model allows
us to reason about the machine system to address inter-
pretability. In our case study, the estimated DoD and the
physical model told us how the piston condition deterio-
rated. This is because the pump volumetric efficiency de-
scribed as DoD is related to the degree of piston surface
wear.
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Then, in the preparation phase, we constructed 20 hy-
perplanes in the state space with the historical data only
under normal machine behavior and the simulated data.
Using the hyperplanes, we verified that our method iden-
tified the trend of the deterioration of the hydraulic pump.
As a result, our method addressed the issue with data de-
pendency.

Furthermore, our method succeeded in addressing two
issues described in Section 1. First, it filled the gap be-
tween historical and simulated data to minimize the dif-
ference between the hyperplane of historical data and that
of simulated data. As a result, we succeeded in building a
physical model that achieved a high correlation coefficient
between simulated and historical data.

One of the key criteria on the level of validity of the
physical model is the correlation coefficient of simulated
and observed data. In this case study, we built the physical
model to achieve the correlation coefficient over 0.9.

Second, the state space clarified the relationship among
input (rotational speed and desired pump pressure), ob-
servable state variables (drain pressure), and DoD. Time
series data of multiple operation modes were mapped onto
the hyperplane in the state space. As a result, we success-
fully estimated the DoD with the state space regardless of
the machine operation mode.

Our method can be applied to various machine systems
under the following condition. First, attributes of deterio-
ration are defined in the physical model. Then, input and
output data of the physical model are observed from the
physical world. Finally, the machine system has multiple
operation modes.

However, our method has potential limitations. For ex-
ample, it dealt with a single failure mode and deterioration
that was assumed to progress in accordance with time.
Multiple failure modes need to be considered in the fu-
ture. Moreover, the accuracy of our method depends on
the physical model preciseness. In our case study, we built
the simple physical model of hydraulic pump based on the
design information and discussion with domain engineers.
Future study should clarify a level of model preciseness
and design information to apply our method.

5. Conclusions

For condition monitoring systems, we proposed a phys-
ical model-based method for estimating deterioration with
a CPS. Then, in a case study, we demonstrated the feasi-
bility of the proposed method for estimating the deteriora-
tion of an actual machine system, a mining machine, with
actual data.

The advantages of the proposed method include iden-
tifying the degree of deterioration in machinery that has
multiple operation modes, as well as addressing inter-
pretability and data dependency.

In future work, we will deal with multiple failure modes
for condition-based maintenance.
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