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When we drive a car, the white lines on the road show
us where the lanes are. The lane marks act as a ref-
erence for where to steer the vehicle. Naturally, in
the field of advanced driver-assistance systems and au-
tonomous driving, lane-line detection has become a
critical issue. In this research, we propose a fast and
precise method that can create a three-dimensional
point cloud model of lane marks. Our datasets are
obtained by a vehicle-mounted mobile mapping sys-
tem (MMS). The input datasets include point cloud
data and color images generated by laser scanner and
CCD camera. A line-based point cloud region growing
method and image-based scan-line method are used
to extract lane marks from the input. Given a set
of mobile mapping data outputs, our approach takes
advantage of all important clues from both the color
image and point cloud data. The line-based point
cloud region growing is used to identify boundary
points, which guarantees a precise road surface region
segmentation and boundary points extraction. The
boundary points are converted into 2D geometry. The
image-based scan line algorithm is designed specifi-
cally for environments where it is difficult to clearly
identify lane marks. Therefore, we use the boundary
points acquired previously to find the road surface re-
gion from the color image. The experiments show that
the proposed approach is capable of precisely model-
ing lane marks using information from both images
and point cloud data.

Keywords: point cloud, mobile mapping system, region
growing, scan-line algorithm, lane mark extraction

1. Introduction

There has been a large increase in the use of point
cloud datasets in three-dimensional (3D) image process-
ing techniques. This is due to the advance of 3D scanning
technologies advance. Today, many affordable and ac-
curate laser scanning systems have become available for
research or practical use. Mobile mapping systems are
one of the most popular surveying devices for capturing

large-scale point clouds and digital images in urban envi-
ronments, especially for road condition surveying. It typ-
ically has two or more laser scanners and charge-coupled
device (CCD) cameras that are easy to mount on a va-
riety of vehicles. Global positioning system (GPS) and
Inertial measurement unit (IMU) are also combined in
the system that is used to collect angle and acceleration
data. This system can quickly capture the geometry of
the road and its surroundings. The generated point cloud
data representing roads and their surroundings can of-
ten contain millions of 3D vertices. A review of a re-
cently available MMS and surveying technologies can be
found in [1]. Some of the newly developed and presented
systems are [2–5]. The systems produce large-scale 3D
point clouds and high precision geometric measurements.
These data are very helpful for road inspection tasks. Re-
cently, there have been active research efforts to perform
road related processing, such as road segmentation, sur-
face reconstruction, and classification of valuable items.
In [6], road damage information is extracted from image
data. In [7, 8], laser scanning data are used to detect ver-
tical pole-like objects beside the road. In [9], a LiDAR
scanner was used to extract roads in a large-scale urban
environment. However, it has been recognized that MMS
is useful in describing the characteristics of complex ur-
ban road environments.

Although there are many interesting topics related to
MMS, intelligent vehicles oriented topics have attracted
wide attention. In particular, lane mark detection is a cru-
cial topic in this research field. A number of papers have
addressed the issue of lane mark extraction from [2, 10–
16, 19, 20]. There are two main types of approaches that
have been proposed: (i) approaches based on image pro-
cessing [10–12, 19, 20], and (ii) methods using 3D point
cloud data [13–15]. Only a few researchers have com-
bined both images and point clouds for lane mark detec-
tion [2, 16]. The authors of [2] designed a MMS to ac-
quire accurate camera and laser-scanner positions. The
road line locations were then calculated by using both the
image and the 3D road surface model information col-
lected by MMS. A framework is presented in [16] that
includes road point selection and lane mark extraction.
First, they selected the road points by using a threshold-
ing algorithm. Next, the lane marks were extracted us-
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ing a template matching method with the help of an in-
tensity image of the point cloud data. The image-based
methods are efficient when the road surface region is
accurately-defined, but it is often difficult to extract pre-
cise road regions using only color information of an im-
age because color information is highly sensitive to en-
vironmental conditions. The 3D model-based approaches
can deal with the environmental noises, but most of the
aforementioned approaches require a manually selected
region of interest (ROI) and additional information such
as the intensity value of points or a colored point cloud
be collected by a specific type of scanner. Furthermore,
the intensity value of points and the colored point cloud
are highly sensitive to the distance between the measured
points and laser scanner. Therefore, it is difficult to pre-
cisely extract lane marks with existing methods.

In order to obtain a 3D trajectory or orbit information of
a vehicle, high accuracy lane mark detection is demanded
for advanced driver-assistance systems and autonomous
driving.

Three-dimensional lane mark models can be used as a
reference to create such trajectory or orbit information.
They can not only aid steering to stay within the lane, but
can also control the vehicle to follow the road accurately
in self-driving mode.

Therefore, we have performed this research. The ob-
jective of this work is to derive an approach for precise
3D modeling of lane marks by combining both image and
point cloud features. In this work, we develop a fast, pre-
cise and effective method to create 3D point cloud models
of lane marks. The main idea is to extract a precise road
surface region from the image using the combination of
the color image and point cloud data. According to the
features of point cloud data, three-dimensional informa-
tion is used for defining a precise road surface region, and
we adopt a line-based region growing method to extract
the region [17], which provides accurate boundary points.
Such an information is used as the constraints for repre-
senting the boundary edge in the process of road surface
region extraction from the image. Then, to extract the
road surface region from the image, a specialized scan-
line algorithm is used. After that, a binarization method
is applied for lane mark extraction. Finally, the extracted
lane marks are converted into 3D models.

In summary, the main contributions of this work are
as follows. First of all, we propose a novel road surface
region extraction method from the image that combines
information from the color image and point cloud data.
Second, the specialized scan-line algorithm reduces the
execution time of the whole procedure significantly. It
can also improve the accuracy of the road surface region
edge estimation slightly. Finally, we perform experiments
on a complex urban road dataset. Precise 3D lane mark
models are created. With the guidance of these models,
we can educe the overall perspective of road track.

The rest of this paper is organized as follows. Section 2
presents the proposed approach in detail. The experimen-
tal results of extractions are provided in Section 3, and
Section 4 concludes this paper.

(a) Point cloud data collected by
laser scanner.

(b) Color image collected by cam-
era.

Fig. 1. Data obtained by MMS.

Fig. 2. The difference in point density according to the di-
rection.

2. Method

2.1. Datasets
The point cloud data and images used here are captured

using a 3D laser scanner and CCD camera. The benefit of
a 3D laser scanner is that the vehicle position is known
and can be used for information on the road’s location
and orientation.

The whole dataset comprised of approximately 91.25
million points. The length of the road is approximately
2,900 m. To cope with the large size of raw point data,
the collected data is automatically divided into volumes.
Each volume has around 300,000 points that collectively
represent about 8 m of the road and its surroundings.

Each point not only has a 3D coordinate but also has
a laser irradiation angle and GPS time. This information
can be used to structurize the points. From this informa-
tion, we use laser the irradiation angle in order to separate
the point cloud into scanlines. Moreover, we order points
in a scanline and find the neighborhood elements by laser
irradiation angle information. The point cloud data and
color image used in our research are illustrated in Fig. 1.

However, the interval of measured points along the di-
rection the MMS travels depends on the rotating speed of
the laser irradiation part and the speed at which the MMS
travels. The rotation period of the laser irradiation part is
much longer than the laser irradiation period. The mea-
surement interval along the direction the MMS travels is
often a few hundreds of millimeters. Thus, the density of
point distribution is greatly unbalanced with the direction
(Fig. 2).

This uneven distribution causes a problem when cal-
culating geometric information using neighboring points
because it is necessary to define a neighborhood range

Int. J. of Automation Technology Vol.12 No.3, 2018 387



Su, J. et al.

Fig. 3. The estimated normal vector at the point around the
boundary. The green line is the normal vector at the point
colored red. Small blue dots are the neighborhood points
used for estimating the normal vector.

that is too wide in the sparse direction. For example, if
the range of the neighborhood is defined too widely in
estimating the normal vector, we cannot estimate the vec-
tor precisely at the point on the planar region around the
boundary of the structures. Fig. 3 shows an example of
such a case. The estimated normal vector is tilting be-
cause the neighborhood region includes points of a verti-
cal plane even though the target point is on the horizontal
plane. We solve this problem by employing a local best-fit
plane, which is described in Section 2.3.

2.2. Overview of Method
Our method takes a sequence of point clouds and im-

ages as input. The GPS time stamp is used to find an
image and its corresponding point clouds that were cap-
tured during a certain time interval. For each volume of
raw point cloud data, we find an image to which all 3D
points can be projected to this image.

We first apply a line-based region growing approach for
road surface region extraction from point cloud data. The
end points of each scanline from the extracted point cloud
explicitly represents the edge points between the road and
curb.

We then convert the 3D end-point coordinates into two-
dimensional (2D) space. We can also project the end
points from point cloud onto image.

The converted end points are considered as the input of
our specialized scan-line algorithm. For each side of road
boundary, we initialize an edge list that holds end points
and compute the intersections for each edge segment with
scan-line. The road surface region is then extracted with
the scan-line algorithm.

Because the extracted road surface region images used
here are taken along the road, we can assume that the lane
marks have the highest intensity pixel value. A threshold-
ing binarization method is used to detect the lane marks
from the extracted road surface region image. Finally, we
extract the 3D points corresponding to the detected lane
marks.

The pipeline of processing steps is depicted in Fig. 4.

2.3. Line-Based Region Growing
The point clouds used here are collected by the Z+F

IMAGER 5010 laser scanning system. The system out-
puts approximately one million points per second and the

rotation speed of the laser head is 50 rps. Each point has a
3D coordinate and some additional information, including
laser irradiation, the GPS time, and distance between the
source point of the laser and a sampled point. We assume
a geometric discontinuity at the boundary of the road. In
that case, the region growing process can stop exactly at a
boundary point.

To find the location of the boundary points precisely,
we use a line-based region growing method [17, 18] to
extract the road surface region from the point cloud.
Miyazaki et al. proposed the method mentioned in Sec-
tion 2.1 to tackle such problems. Following this method,
the input to our algorithm is a set of line segments. We
first create line segments from a point sequence using the
angle of laser irradiation. We then use the line segments
as processing elements for the road surface region extrac-
tion.

For searching of neighborhood line segments, we use
the laser irradiation angle associated directly with sam-
pled points. If two points on two consecutive scanning
lines have a similar laser irradiation angle, these points
are considered to be located near each other.

In the region growing approach, normal vector estima-
tion is a crucial step. The difference between the angles of
the normal vectors is used to determine whether a neigh-
borhood should be added to the region. Least-squares
fitting for neighbors is often used for normal vector es-
timation. However, such a method is unable to derive a
precise estimation of a normal vector for our purposes.
Thus, we adopt the local best-fit plane of the neighbor-
ing line segments to estimate the normal vector of a line
segment. The local best-fit plane is defined as the plane
that passes through the seed line segment and includes the
most neighboring line segments [17, 18]. The normal vec-
tor in the local best-fit plane is used as the normal vector
of the line segment. Fig. 5 shows an example of the line
segments and normal vector estimation.

After estimating the normal vector for the line segments
by using the local best-fit plane, we calculate the differ-
ence between the angles of the normal vectors to deter-
mine if a neighboring line segment should be added to the
region.

The common region growing approach starts with a se-
lected seed. In our case, we select the seed segment with
the largest degree of fitting from the input line segment
that has not yet been assigned to any region.

2.4. Scan-Line Algorithm
Scan-line algorithm, also known as scan-line rendering

or scan-line fill algorithm, is a widely used shaded region
determination algorithm. This algorithm works by inter-
secting the scan-line with polygon edges and filling the
polygon between pairs of intersections. Most scan-line
algorithms are designed for 3D and 2D image rendering.

In our case, each pair of the road surface region bound-
ary points can be seen as two end points of a segment of
the polygon edge. Therefore, we consider those segments
as the edges of the road surface region. The flowchart of
an algorithm based on this idea is shown in Fig. 6.

388 Int. J. of Automation Technology Vol.12 No.3, 2018



3D Modeling of Lane Marks Using a Combination of Images
and Mobile Mapping Data

Fig. 4. Processing pipeline.

Fig. 5. Example of the line segments and normal vector
estimation.

All scan-lines in this algorithm are horizontal. Because
of the setting of MMS, the line segments in the point
cloud obtained by MMS and the scan-lines are not paral-
lel. Hence, we consider the projected road surface region
to be a trapezoid shape, and then apply a scan-line based
approach for precise road surface region extraction from
the projected 2D image. Fig. 7 illustrates the idea of the
scan-line algorithm with example data.

In the case of a typical scan-line algorithm, to cope with
multiple intersections, an active edge list was maintained
for edges that cross the current scan-line. However, for a
trapezoid-shaped road surface region, there are only two
intersections with a scan-line. Therefore, the edges can be
held by two edge lists. We can contain the active edges us-
ing pointers to the edge lists. Such a data structure can re-
duce the execution time and the amount of memory used.

Boundary points of the projected road surface region
represent precise end points of the road surface region. As
a preprocessing step, this algorithm creates edges between
each pairs of adjacent boundary points and two edge lists
need to be created.

Fig. 6. Flowchart of the scan-line algorithm.

We hold the edges formed by the left and right end
points in two edge lists. The data structure of the edge
lists is shown in Fig. 8(a). To handle the parallel sides of
road surface region, preprocessing is needed. The paral-
lel side edges in Fig. 7 are decreasing, i.e., the slope is
negative. Then, first element of the right edge list will be
inserted to the top of the left edge list and the last element
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Fig. 7. Idea of the scanline algorithm with example data.

(a) Data structure of edge lists.

(b) Parallel sides handling.

Fig. 8. Data structure and special handling of the scan-line
algorithm.

of the left edge list will be added to the bottom of the right
edge list. Fig. 8(b) illustrates the special handling.

After the edge lists were created, all edges were sorted
according to their minimum y-value miny and maximum
y-value maxy. Next, the algorithm needs a range of scan-
lines spanning the region (Sybottom, Sytop), where Sybottom
and Sytop are the lowest and the highest y values of the end
points, respectively. We process the scan line from bot-
tom to top in increasing y order. Instead of a traditional
active-edge list, the active-edge pointers to the edge lists
are needed here. The pointers contain the active edges
crossed by current scan line. The algorithm first initial-
izes two points to the edge lists according to miny. Sec-
ond, the algorithm finds the intersections of the scan-line
with each active edge, and then extracts all the points be-
tween the pairs of intersections. When the current scan
line moves above the upper endpoint of an active edge,
then, it becomes inactive. The pointer moves to the next
edge in the list. Finally, the scan-line reaches Sytop and ob-
tains the road surface region from the image. Pseudocode
for this scan-line algorithm is shown in Fig. 9.

2.5. Binarization and Lane Marks Detection
Because a white lane line is a bright object against a

dark background, a binarization method is carried out to

Fig. 9. Pseudocode for the scan-line algorithm.

(a) Binarization result of extracted road surface region. Each line is
indicated by a different color.

(b) Extracted lane marks.

Fig. 10. Result of lane mark extraction.

obtain the brighter regions. We generate a binary image
of the extracted road surface region to find the lane mark
locations. The thresholds are manually selected because
the brightness of the roads are influenced by environmen-
tal lighting conditions. An example of a binary image of
an extracted road surface region is shown in Fig. 10(a),
where each lane mark is indicated by a different color.
Fig. 10(b) shows the result of the extracted lane marks.

2.6. 3D Lane Marks Points Extraction
After lane mark extraction from the image, 3D lane

mark models in our approach are represented as 3D point
clouds. A 3D lane mark model is a set of 3D points that
lies in a 2D lane mark region when projected onto the im-
age. Here, we perform an inverse projection to recover the
3D coordinates of the detected 2D lane mark points. The
inverse projection is based on the information of project-
ing a 3D point onto an image and outputs 3D lane mark
point cloud models.

3. Experiment Results and Discussion

In this paper, as mentioned in Section 2.3, the input
point cloud is measured by an MMS equipped with the
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Fig. 11. The input point cloud.

Z+F IMAGER 5010 laser scanning system. Fig. 11 shows
the input point cloud used by this experiment. This point
cloud consists of approximately 2.1 million points. There
are 21 color images used in the experiment. The color im-
ages were taken by the same MMS during data collection.

Figure 12(a) is the extracted road surface region by
line-based region growing. We paint the road surface
points and non-road points in red and black, respectively.
There are a total of 598,101 road surface points. We can
see that the line-based region growing method success-
fully extracts the road surface region.

Because our region growing method uses points located
at the boundary between road surface and curb, the limita-
tion of our approach is that geometrical discontinuity is a
necessary boundary of the road, as shown in Fig. 12(b). In
situations like this, the region may exceed the appropriate
boundary.

3.1. Road Surface Region Extraction
For evaluating the effect of the scan-line algorithm, we

have extracted the road surface region from the image ei-
ther with or without the scan-line algorithm. As a prepro-
cessing step, we only need to project the end points to the
image by using the scan-line algorithm. In contrast, with-
out scan-line algorithm, we have to project all extracted
road surface region points to the image during the pre-
processing, and then extract the projected area from the
image. The execution time of the experiment is illustrated
in Table 1. In the preprocessing step of the extraction
method without the scan-line algorithm, the time cost of
reading the point cloud data from raw data and projecting
the 3D points to 2D image are included. For the scan-line
algorithm, the end point extraction is also considered as
a preprocessing step. It can be seen from Table 1 that
3D point projection is time consuming and the execution
time for extraction without scan-line algorithm is longer
than 15 s. Although many mature image processing meth-
ods can be used for the road surface region detection, the
number of points that need to be projected onto the image
is the most important issue in choosing the methodology.
We can see that the scan-line algorithm reduces the exe-
cution time substantially. Fig. 13 shows a sample result
from the scan-line algorithm process on a road segment.

3.2. Lane Mark Extraction
In [9, 16, 17], a manually selected ROI is used to define

the road surface region in the image. Defining an ROI can

(a) The result of properly extracted region (upper: perspective view;
bottom: top view).

(b) The region exceeds the appropriate boundary (upper: perspective
view; bottom: top view).

Fig. 12. The results of road surface region extraction from
point cloud.

Table 1. Comparison of execution time.

Extraction Extraction
without scan-line with scan-line
algorithm algorithm

Preprocessing 18.480 sec 0.792 sec
Road surface region extraction 0.106 sec 0.098 sec

help to reduce the number of false-positives in the extrac-
tion result. However, such a region cannot guarantee ac-
curate extraction of lane marks under complex urban en-
vironments. We predefined the binarization threshold as
101 to detect the lane marks. To compare our method with
other methods, the lane marks were also extracted using
the ROI method. Fig. 14(a) shows the result of lane mark
detection with a precise road surface region. Fig. 14(b)
shows the result of lane mark extraction using a mask as

Int. J. of Automation Technology Vol.12 No.3, 2018 391



Su, J. et al.

Fig. 13. The result of road surface region extraction from image.

(a) The result of lane mark detection with precise road surface region.

(b) The result of lane mark detection using ROI.

Fig. 14. Comparison of lane mark detection.

an ROI filter. We specify a mask with the same height,
width and position as our result. As shown in the figure,
the guard rail and pavement are falsely included in the re-
gion.

In this experiment, we do not have any ground truth
extraction results to compare with the experimental re-
sults. Thus, the reference data were manually created. To
evaluate the performance, we use precision, recall and F-
measure scores as evaluation metrics. Quantitative evalu-
ation was conducted and the results are illustrated in Ta-
ble 2. It can be seen from Table 2 that the precision, re-
call, and F-measure of our lane mark extraction method
from the image are 0.965, 0.963, and 0.964, respectively,
and the precision, recall, and F-measure of our lane mark
extraction method from the point cloud are 0.981, 0.974,
and 0.977, respectively. The performance of the proposed
method is quite acceptable. In fact, from Table 2 and
Fig. 14(a), it can be seen that the pixels were incorrectly
extracted only because of faded lane marks.

3.3. Result of 3D Modeling of Lane Marks
Figure 15 provides a comparison of 3D lane mark mod-

eling results with a longer road area. The length of the
road is approximately 60 m. Fig. 15(a) presents the result
of 3D modeling the lane marks by the proposed method,
in which points are grouped into 6 lane marks and each
lane mark is indicated by a different color. This result in-
dicates that the proposed method can guarantee a precise
lane mark location extraction. Fig. 15(b) shows the result
of 3D lane mark modeling using the ROI method. The

Table 2. Quantitative evaluation results.

Our result in ROI result in Our result in ROI result in
Fig. 14(a) Fig. 14(b) Fig. 15(a) Fig. 15(b)

Precision 0.965 0.368 0.981 0.690
Recall 0.963 0.963 0.974 0.974
F-measure 0.964 0.533 0.977 0.808

(a) The result of 3D lane mark modeling by the proposed method.

(b) The result of 3D lane mark modeling by the ROI method.

Fig. 15. Comparison of 3D lane mark modeling.

input images used are obtained through the same ROI fil-
ter as in Fig. 14(b). Objects near the white line are also
extracted as false-positive points. For instance, the guard
rail points are extracted and colored brown.

4. Conclusions and Future Work

We propose a novel approach to create a 3D model of
lane marks that combines information from color images
and point cloud data. In line-based region growing algo-
rithm, the precise boundary points are extracted to define
the road surface region. We specialized the scan-line al-
gorithm to the input dataset. The experiment results show
that the proposed method can obtain a precise 3D model
of the lane marks. Our approach can generate better re-
sults if curbstones are found on both sides of a road, but
in some cases, the curbstone does not exist. In the future,
we will enhance the applicability, make our approach suit-
able for more complex environments, and create a precise
3D road track model.
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