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When the minor diameter of an end-mill is 1.0 mm
or less, handling of tools becomes difficult because
of the influence of the characteristic size effect and
bending of the cutting edge. Furthermore, it is hard
for engineers to derive the cutting conditions that
can serve as indexes in the early stage of micro end-
milling. In this study, a system that can make instan-
taneous decisions was developed, on the basis of work-
piece material-characteristics and tool shape parame-
ters, by applying data mining techniques together with
non-hierarchical and hierarchical clustering methods
on micro end-mill catalog data. Slotting experiments
using cemented carbide square micro end-mill were
carried out to investigate the practicability of derived
mining conditions under slotting of A7075 (JIS). We
found that catalog mining can be used to derive the
guidelines for deciding the micro end-milling condi-
tions.

Keywords: micro end-mill, tool catalog data, data-
mining, slotting, cutting condition

1. Introduction

Requirements placed on the parts that have microscopic
contours have been increasing as a result of miniatur-
ization of the optical apparatus, medical equipment, and
electronics. In processing such as microscopic contours,
micro end-mills with outside diameters of 1.0 mm or less
are promising low-cost and quick-delivery technologies
for machining metal. The micro end-mills have unique
processing characteristics such as the size effect [1] that
other general purpose end-mills do not have. Not only is
the tool feed rate comparatively small relative to the nom-
inal size of the edge blade but also the tool stiffness and
hardness are rather low, and this causes the size effect. In
many cases, high velocity revolutions used as a method
to control the load of the tool are influenced by the cir-
cumference of the radial run out of the tool. Therefore,
engineers have trouble finding the suitable cutting condi-
tions that can serve as indexes of the optimal conditions.

While there has been extensive research on micro end-

mill processing from the viewpoint of tool wear [2–4],
surface roughness [5–7], and cutting force [8–10], not
much research has gone into the development of micro
end-milling condition decision support systems. In this
work, we have studied the advanced cutting condition de-
cision support systems that can make decisions on the cut-
ting conditions of ball end-mills and square end-mills for
rough processing [11–13]. In this paper, we present a
cutting condition decision support system (hereinafter a
catalog-mining system [11–13]) that uses significant fea-
tures extracted from the catalogs of the tool makers who
have proven track records in manufacturing high-quality
micro end-milling.

2. Catalog Mining System

Data mining is the process of finding valid, novel, po-
tentially useful, and ultimately understandable data pat-
terns; it is used for predicting large amount of data in
which there are no predetermined notions about what will
constitute an interesting outcome [14–16]. As shown
in Fig. 1, the first method in the catalog-mining pro-
cess is data selection. In this process, data on cemented
carbide micro end-mills tools with outside diameters of
1.0 mm or less were obtained from the 2015–2016 ver-
sions of the catalogs from cutting-tool makers A, B, and
C in Japan (4177 pieces of micro end-mill data in to-
tal). The end-milling condition decision equations con-
sist of the end-mill shape parameters and material char-
acteristics of workpieces in the catalog as the predictor
variables and the end-milling conditions recommended
by the cutting tool makers as the criterion variables. Ta-
ble 1 lists the ranges of predictor and criterion variables of
the makers A, B, and C. For the micro end-milling con-
ditions, the micro end-mill catalogs were mined and the
extracted data were used to define the cutting speed V ,
feed rate f , axial depth of cut Ad, and radius depth of
cut Rd for side-milling. These conditions are defined as
criterion variables. We selected carbon steel, alloy steel,
quenched steel, aluminum alloy, copper alloy, titanium
alloy, super-heat resisting alloy, and austenitic stainless
steel as the workpieces. Next process was of attribute ex-
traction, in which target data were grouped for making
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Fig. 1.Fig. 1. Catalog mining process for micro end-mill.

Table 1. Ranges of target data.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Out side diameter D  mm 0.1  1.0 Vickers hardness Hv 19  740
Shank diameter Ds  mm 3.0, 4.0 Thermal conductivity  W/m K 7.54  237
Overall lenghth L  mm 35  70 Tensile strength B N/mm2 70  2280

Length of cut l  mm 0.08  5.0 Proof stress 0.2 N/mm2 30  1815
Number of flutes z 2, 3, 4 Young's modulus E  GPa 68  210

Helix angle  degree 0  45 Machinability index MI 15  160

Cutting speed V  m/min 8  157
Feed rate f  mm/tooth 0.00015  0.045

Axial depth of cut Ad  mm 0.001  5.0
Radial depth of cut Rd  mm 0.001  0.5

Predictor variables
End-mill shape parameter Workpiece mechanical properties

The kind of tool coating

(Al, Ti)N, (Al, Ti, Cr)N, (Al, Ti, Si)N,
DLC, Non-coating

Criterion variables (Cutting Conditions)

the characteristic clusters using the K-means method, a
non-hierarchical clustering method. In the third step, vari-
able cluster analysis (a hierarchical clustering method)
was used as a statistical analysis to create a hierarchi-
cal structure of the target data that can be visualized as
a tree diagram. Principal component regression was used
to quantify the correlation between predictor and criterion
variables. The response surface method was then used to
create micro end-milling condition decision equations for
each cluster. The detailed calculation algorithm of this
method has been reported in the literature [11–13].

3. Mining Result and Consideration

3.1. Attribute Extraction Using K-Means Method

Figure 2 shows a diagram of an end-mill, the distri-
bution map for each cluster obtained with the K-means
method for each material and the representative shape of
each cluster. In this step, data were grouped using the K-
means method, a non-hierarchical clustering method. The

aim of this process was to classify the whole catalog data
into five clusters from the viewpoint of the tool shape pa-
rameters. We set three variables (L/l, l/De, and Ds/De)
and visualized the shape of the micro end-mill. As 3–5
cluster degree is the limit for human beings [17], we clas-
sified the capacity of interpretation by a person on the ba-
sis of the number of clusters of that level. Fig. 2 shows the
relationship between L/l, l/De, and Ds/De. In the same
manner as in the previous studies [11, 13], an equivalent
De was calculated as the diameter from the weight at the
flute in order to consider the changes in shape because of
the number of flutes. By fixing the values of these three
variables, we determined the external form of the square
end-mill. The clusters in Fig. 2 had the characteristic tool
shapes, usages, and patterns mentioned below.

– Cluster 1: Micro end-mills with longer edges that
have a lower Ds/De and higher l/De (1329 pieces
of data).

– Cluster 2: Micro end-mills with long neck or length
of cut dedicated to deep groove processing (584
pieces of data).
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Fig. 2.
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Fig. 2. Distribution map and tool shape ratio of each of the
extracted clusters.

– Cluster 3: General-purpose micro end-mills used
mostly for high-speed milling (1876 pieces of data).

– Cluster 4: Micro end-mills with outside diameters of
0.5 mm or less (292 pieces of data).

– Cluster 5: Micro end-mills with outside diameters of
0.2 mm or less (91 pieces of data).

The K-means method was used to make clusters (at-
tribute extraction) expressing the tool-shaped feature.

3.2. Structural Visualization of Predictor Variables
The methods on how to choose significant predic-

tor variables to estimate end-milling conditions have
been reported in previous studies [11–13]. The catalog-
recommended end-milling conditions were divided into
two main processing methods, namely, side-milling and
slotting. Therefore, each cluster was divided into two at-
tributes on the basis of the processing method. In this
study, since we focused on the slotting process of micro
end-milling, we mainly focused on the analysis results
of slotting. In our previous paper [18], analysis results

Fig. 3.
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Fig. 3. Tree diagram of Cluster 2 under slotting condition.
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Fig. 4. Cp values of Cluster 2 under slotting condition.

of other clusters with side-milling and slotting were dis-
cussed. Fig. 3 shows the tree diagrams of Cluster 2 which
are the results of the variable cluster analyses. Ward’s
method [19] was used to calculate the distance after the
clusters were combined to form cluster pairs. We can in-
terpret the correlations for each variable by focusing on
the groups to the left of the vertical dashed-dotted line
(cutting line) in Fig. 3. The closer to the left the groups
combine, the higher is the correlation between the two
variables. Form of the tree diagram that expresses the con-
figuration of the data is fundamentally the same in each
cluster. The variables, including tool shape parameters
D, L, l, Ds, z, θ , and workpiece characteristic parameters
λ , MI, and Hv, σB, σ0.2, E for Cluster 2 under slotting
conditions are divisible into three groups. The correla-
tion of λ and MI, which are material characteristics of the
workpiece, is closer to the correlation of the tool shape
parameters than those of other material characteristics.

3.3. Quantification of Correlation Between Predic-
tor and Criterion Variables

Vertical axis in Fig. 4 shows the regression coefficients
(Cp) of Cluster 2 under the slotting condition that quan-
tifies the correlation between the predictor and criterion
variables using principal component regression. Visual

240 Int. J. of Automation Technology Vol.12 No.2, 2018



Aiding of Micro End-Milling Condition Decision
Using Data-Mining from Tool Catalog Data

Table 2. Correlation between predictor and criterion variables of Cluster 2.

 
 
 
 
 
 
 
 

D L l Ds z MI Hv B 0.2 E
V
f

Ad

Group 1 Group 2 Group 3

  Cp 0 ~ 1.9
Cp 2.0 or more

  Cp 0 ~ -1.9
Cp -2.0 or less

tool shape parameters, such as D, l, and L indicate al-
most the same tendency for each cutting condition. The
larger the tool shape parameter, the higher is the tendency
for the cutting condition. Specially for Ad of Cluster 2,
l and L are highly positive correlations. As for L, nom-
inal size of pump changes with the amount of over hang
in the state that chucking of the end-mill was carried out
to the holder. Therefore, in this study, it is desirable to be
able to determine Ad based on the value of l. The mate-
rial characteristic parameters (Hv, σB, σ0.2, and E) show
negative correlation to the cutting conditions except for
the feed rate. In general, the larger the values of Hv, σB,
σ0.2, and E become, the more the machining character-
istics approach those of difficult-to-cut materials. There-
fore, in many cases, the cutting conditions should be set
to account for the decrease in these values in order to ex-
tend the tool life. However, for more difficult-to-cut ma-
terials, the tool catalogs recommend a higher feed rate.
While λ and MI are material characteristics, the tree dia-
gram suggests that the tool shape parameters are strongly
correlated to them. This tendency is also reflected in the
degree of influence of the criterion variable.

3.4. Significant Predictor Variables Selection
Table 2 shows the correlation between the predictor

variables and criterion variables obtained from Figs. 3
and 4 with the help of the arrow shape. From the re-
sults of the variable cluster analysis and principal com-
ponent regression, we divided the explanatory variables
into three groups that have a high correlation according to
the cutting line of the tree diagram and compared the re-
gression coefficients of the criterion variables to the order
of predictor variables with high correlation in the same
group. We used highly correlated predictor variables and
discarded the weakly correlated variables. The significant
variables for Cluster 2 used in each equation are l, z, θ , λ ,
MI, and Hv.

3.5. Derivation of Micro End-Milling Condition
Decision Equations

We compared the relationship between the predictor
variables and criterion variables for Cluster 2, which
mainly comprises of micro end-mills with long necks and
length of cut dedicated to deep groove processing. We
developed equations for determining the end-milling con-
ditions using the response surface method, which uses the

significant variables. For example, the ones under slotting
for Cluster 2 are shown below. To evaluate the accuracy
of the end-milling condition decision equations, we com-
pared the residual per unit freedom. In general, adjusted
R-squared (R2

ad) is used for judging accuracy [20].

Ad(R2
ad0.53) = −0.06l−0.002λ −0.0001HV

+0.02l2 +5.6×10−6λ 2 +0.001lλ
+2.7×10−5lHV +3.8×10−6λ HV
+0.08 . . . . . . . . . . . (1)

V (R2
ad0.21) = 53.3θ +0.7λ +0.5HV

−0.7θ 2 +0.0008λ 2−6.8×10−5HV 2

−0.02θλ −0.01θHV −987.6 . . (2)

f (R2
ad0.05) = −8.4×10−5MI−0.0005E

+1.1×10−5zMI +4.5×10−6zE
+6.9×10−7MI2 +1.9×10−6E2

+0.03 . . . . . . . . . . . (3)

Figure 5 shows the cutting conditions as estimated by
catalog mining on the horizontal axis and the catalog-
recommended values on the vertical axis for Cluster 2.
For deciding Ad, l is dominant and has a higher positive
correlation with Ad than λ or HV . Thus, the influence that
other tool shape parameters and material property values
have on deciding Ad is smaller than that of l. The R-
squared values of V and f are less than 0.5 demonstrat-
ing that the deriving value is not significant. However,
from the results of slotting in Fig. 5, the estimated values
of V are mostly lower than the catalog values. In most
cases, the catalog-recommended values require very fast
spindle rotations or table feed for use by machining cen-
ters in small and medium-sized enterprises. Therefore, if
the estimated value is low, suitable cutting conditions for
practical use can be derived from the resulting equation.

4. Experimental Verification of Catalog-
Mining Recommended End-Milling Condi-
tions

4.1. Experimental Set-Up

To validate the end-milling conditions derived from the
equations, we conducted micro end-milling slotting ex-
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Fig. 5.
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Fig. 6.
Fig. 6. Experimental set-up and tool shape parameter used in experiments.

Table 3. End-milling conditions.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Cutting condition V  m/min f  mm/tooth Ad  mm MRR mm3/min
Test 1 (Catalog condition) 79 0.0010 0.15 8
Test 2 (Mined condition) 52 0.0060 0.70 139

0.70
0.42
0.70
0.42
0.70
0.42

Test 4 52 30
Test 5 73
Test 6 52 0.0084

0.0060 0.15
42

31

52

73

Test 3

0.0060

0.0036

0.0060

83 - 195

periments (Fig. 6) under conditions derived from data
mining (mined conditions) and also catalog recommended
conditions for general-purpose aluminum alloy. We per-
formed slotting commuting a net cutting time of 15 min
into the cutting distance. The workpiece was 50× 50×
50 mm3 of aluminum alloy (A7075 (JIS), HV : 170, λ :
130 W/(m/K), E: 72 GPa, MI: 120). We used TiAlN-
coated ϕ0.5 square end-mills with long cutting length
suitable for deep slotting which belongs to Cluster 2.
The material removal rate (MRR, mm3/min) is defined as
MRR = F ·Ad · D where, F is the table feed. The ma-
chine tool was UVM-450C (TOSHIBA MACHINE Co.,

Ltd.). The tool extension was 12 mm. In the experiment,
we measured the bottom surface roughness using 3D op-
tical surface profiler NewView 7300 (Zygo Co., Ltd.) and
cutting force by using piezoelectric dynamometer (Kistler
Co., Ltd.). Table 3 lists the mined conditions obtained by
substituting the tool parameters and workpiece material
property into Eqs. (1)–(3) and the mined conditions used
in the experiments. The slotting experiments were con-
ducted under a total of eight conditions: catalog condi-
tion (Test 1), mined mining condition (Test 2), and other
conditions which made up 60% to 140% of each mined
condition for V , f , and Ad (Test 3).

242 Int. J. of Automation Technology Vol.12 No.2, 2018



Aiding of Micro End-Milling Condition Decision
Using Data-Mining from Tool Catalog Data

4.2. Process for Determining an Appropriate Value
of AAAddd

It is not clear if we can conduct stable milling by us-
ing maker-recommended end-milling conditions (catalog
condition). Such conditions are absolute criteria for max-
imizing MRR, so engineers typically have to adjust them
in accordance with machine tool functionality and stiff-
ness used in milling, workpiece shape, clamping method,
milling cost, delivery date, and chip emission treatabil-
ity. Therefore, appropriate end-milling conditions have a
wide range of use [21]. In slotting, when a micro end-mill
with a long, effective cutting length is used, the stiffness
of the cutting part decreases in inverse proportion to the
third power of the nominal size of the pump of the cutting
force added to cutting flutes. In the case of Ad being en-
larged, since the cutting force of the cutting part increases,
the choice of Ad should be highlighted as a factor that de-
termines the stability of machining. Test 1 conducted 15
minutes of stable machining without a large amount of
tool wear. However, in the other seven conditions, the
tools broke at the moment of contact with the workpiece.
Next, the values of V , f , and Ad were verified in terms
of whether they provided stable machining. Focusing on
the value of Ad, an experiment was first conducted un-
der conditions in which the Ad value was 30% lower than
that in Test 2 (contained in the Table 3); the conditions
were set to 0.15 mm Ad, which is equivalent to the cat-
alog value (Test 4). Although the tool broke with an Ad
of 30% (0.21 mm) of the mined conditions, 15 minutes of
stable machining was performed under conditions (Test 4)
that set Ad to 0.15 mm, as in Test 1. Therefore, when Ad
was lowered to a value near to 0.15 mm, stable machining
became possible. The process of determining Ad, which
became clear after running tests, needs to be fed back into
the process of creating a support system for determining
indicative cutting conditions for micro slotting.

4.3. Derivation of Optimal Cutting Conditions
based on Mined Conditions

Figure 7 shows the range of conditions in which sta-
ble machining was possible and the wear state of the tool
tip. Test 1 was compared with the conditions in Test 4.
As shown in Table 3, the MRR of Test 4 was approx-
imately four times the MRR of Test 1. In terms of the
total amount of material removed after 15 minutes, the re-
sult for Test 1 was 150 mm3 and the result for Test 4 was
450 mm3. In addition, the machining efficiency in Test 4
was higher than that in Test 1. The bottom-slot surface
roughness of Test 1 was Ra: 0.183 μm, and Rz: 1.59 μm
while the bottom-slot surface roughness of Test 4 was Ra:
0.216 μm, Rz: 1.95 μm and was therefore rougher. Fx
(the principal force) of Test 4, as shown in Fig. 8, was
approximately four times that of the Test 1, and Fy (the
feed force) was about three times that of the Test 1. As a
result, the final surface quality of Test 4 did not decrease
noticeably. The MRR of Tests 5 and 6 were approximately
5.5 times the MRR of Test 1. The total amount of mate-
rial removed after 15 minutes was 638 mm3 in Tests 5

Fig. 7.
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Fig. 8. Cutting force of each of the end-milling conditions.

and 6, and the machining efficiency was even higher than
that of Test 4. However, in Test 5, since the irregular-
ity in alignment with the cutter mark of the tool bottom
occurred on the bottom-slot, the accuracy of finishing de-
teriorated more than that in Test 1. Moreover, in Test 6,
Fx and Fy were approximately four times larger than in
Test 1, and the finished surface roughness after process-
ing was also high compared to that in other conditions.
It turned out that the Test 4 possessed the optimal cut-
ting conditions. This set the Ad to 0.15 mm, the value
derived from Test 2 with the data-mining method. Mi-
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cro end-milling condition decision determinants derived
from data-mining process are important indicators for ad-
justing end-milling conditions on the basis of end-milling
efficiency and tool-life, at the beginning of the manufac-
turing stage.

5. Conclusion

We developed a process that uses both hierarchical and
non-hierarchical clustering methods to mine data in micro
end-mill catalogs. We derived micro end-milling condi-
tions using end-milling condition decision equations de-
rived from the catalog mining system. Slotting experi-
ment was conducted in order to evaluate the usefulness of
data-mining support system for determining micro end-
mill cutting conditions. The following results were ob-
tained for how the three elements (cutting speed V , feed
rate f and axial depth of cut Ad) influence the cutting
force at the time of processing, the finished surface rough-
ness after processing, and the amount of tool wear. Setting
the amount of Ad affects the tool wear during microscopic
slotting using micro end-mills enormously. If the value of
Ad is determined, even if the value of V increases, the
tool can be used without breaking. However, the irregu-
larity resulting from the trajectory of a cutter being deeply
transferred by the bottom of a slot occurs. Although stable
machining is possible even if f is increased, the cutting
force increases. Moreover, the quality of the finished sur-
face worsens. We found that catalog mining can be used
to derive the guideline cutting conditions for unskilled en-
gineers and to extract the end-milling condition decision
tendency.
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