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In recent years, various types of disasters have oc-
curred frequently in Japan. Such incidents require a
rapid response. It is necessary to grasp the full ex-
tent of the disaster at an early stage. Research and
development of effective methods to achieve this are in
progress. Although each method has its own charac-
teristics, from a business perspective it is necessary to
know when and which method should be used to ob-
tain the full extent of the damage. As of yet, there is no
comparison among methods to answer this question.
Therefore, the purpose of this study is to position the
time-cost per unit area as one of the evaluation crite-
ria to understand or estimate damage. To achieve this
objective, the procedure of each method is clarified,
the area to be analyzed by each method is identified,
and the time-cost of each procedure is estimated. The
time-cost per unit area is calculated by dividing the
time-cost by the area of interest. Particularly, the time
required for the preparation of each method, which
is independent on the area, is positioned as the initial
time-cost that is also derived and added. Based on the
above, a linear function with the area of damage as a
variable is determined. Simulations are performed to
derive the estimated time-cost. Depending on the as-
sumed area of damage, results are obtained when each
method is applied.

Keywords: early damage detection, time-cost simu-
lation, artificial intelligence, satellite image, unmanned
aerial vehicle

1. Introduction

Since the Great East Japan Earthquake in 2011, large-
scale wide-area disasters have frequently occurred in
Japan. Examples include the Kumamoto Earthquake in
2016, the torrential rains in western Japan in 2018, Ty-
phoon No. 15 and Typhoon No. 19 in 2019, and the tor-
rential rains in July 2020. With each incident, the damage

tends to intensify. After a disaster occurs, a rapid and ef-
fective disaster response is launched to respond to the sit-
uation. In disaster response, it is necessary to maximize
the power of the organizations involved. For this purpose,
unification of situational awareness is essential [1]. De-
veloping Common Operating Picture, that is unification
of situational awareness, requires the understanding and
sharing of two types of information: the status of damage
and the status of available resources.

With the recent progress of information and communi-
cation technology (ICT), various methods have been stud-
ied to understand damage occurrence. Methods include
crowdsourcing from aerial images to hasten labor distri-
bution [2], deep learning from satellite image data to iden-
tify the disaster area [3], and deep learning from drone
images to understand roof damage [4]. In addition, some
of the research results have been applied to disaster areas.
Some of the research results have been implemented in
disasters. In each research study, accuracy is pursued, but
the time-cost is not sufficiently assessed. From the first
responder’s point of view, it is possible to strategically re-
spond by estimating which method can be used to assess
the damage, by when, and with what level of accuracy.
This study aimed to evaluate the time-cost per unit area
as one of the evaluation items in the phase of damage as-
sessment. To verify the feasibility of this evaluation item,
this study focused on five methods that are currently being
implemented or are undergoing empirical research. Each
method was considered using the time-cost per unit area
as the evaluation axis, and simulations were conducted
assuming a damaged area. In addition, the characteristics
of each method and effective measures for grasping early
damage will be discussed.

2. Methods for Grasping Damage to Dwellings

Disasters include both human casualties and infrastruc-
ture damage. It is difficult to estimate the human damage
because it is highly individualized. It can be determined
by medical institutions, disaster response organizations,
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Fig. 1. Overview of housing damage certification survey work.

and the victims themselves. Therefore, this study used
five methods to focus on building damage. In this chap-
ter, an overview of each method, its characteristics, and
the specific flow are shown.

2.1. Determination of Damage Level by Residential
Damage Assessment Survey

The residential damage assessment survey is a survey
conducted by the affected municipalities to determine the
extent of damage to dwellings based on the guidelines
established by the Cabinet Office [5]. Specifically, the
level of damage is classified into five categories: total
destruction, major partial destruction, partial destruction,
quasi-partial destruction, and damage that does not reach
quasi-partial destruction (partial destruction). Prior to the
March 2020 guidelines, there were four damage cate-
gories: total destruction, major partial destruction, half-
partial destruction, and partial destruction. In the case of
earthquake disasters and floods with large external forces,
in response to a complaint from the victim the extent of
damage is determined by an exterior survey (primary sur-
vey), followed by an interior survey (secondary survey)
(Fig. 1). Once a disaster strikes, various disaster relief
measures are applied to help victims rebuild their lives. A
disaster victim certificate is issued as a basis for such de-
cisions. To determine the extent of the damage, a damage
assessment survey is conducted. The survey that deter-
mines the degree of damage is called the damage assess-
ment survey. In other words, the survey is indispensable
for providing various kinds of support to affected victims.

In this survey method, the occurrence of damage is sur-
veyed mainly on the foundation, roof, and walls. Accord-
ing to the percentage of damage, the damage is classified
into five levels. Therefore, it is possible to obtain detailed
information on the damage to each house. However, af-
ter the occurrence of a disaster, the affected municipal-
ities are required to carry out a variety of related tasks,

Fig. 2. Flow of blue sheet determination using drone aerial
images and classification of front and backyard [7].

such as procurement of materials and equipment, secur-
ing personnel, establishment of systems, establishment of
administrative offices, and data management [6]. These
activities require time. This survey is conducted for the
purpose of issuing a disaster victim certificate, one of the
requirements for receiving aid and reconstruction assis-
tance for disaster victims. The survey is not designed to
quickly reveal the full extent of damage. In addition to be-
ing a single building survey, there is a limit to the number
of personnel that can be secured to conduct these surveys.
Although efficiency has improved, these surveys are con-
sidered time-consuming in large-scale disasters.

2.2. Roof Damage Identification Using Aerial Im-
agery

In recent years, drones have become more affordable
and easier to operate; they are now in general circulation.
In the 2019 Yamagata-ken-oki Earthquake, deep learning
was used to identify roof damage based on aerial images
taken by a drone in Murakami City, Niigata Prefecture [7].

Specifically, after designating the area where damage is
expected, a flight plan is made, aerial photography is con-
ducted, orthoimages are generated from the captured im-
ages, and deep learning is used to identify roofs covered
with blue sheets in order to detect exact location. In our
previous research, the survey roles were separated to im-
prove the efficiency of the work (Fig. 2). However, many
challenges are also identified, such as the large amount
of time required for data transfer and the large number of
Ground Control Points (GCPs) that must be manually set
when generating orthoimages over a wide area.

While the ease of drone use has increased, data process-
ing after aerial photography has become time-consuming.
In the case of a widespread disaster, there will be chal-
lenges in procuring drone equipment and materials. Also,
the data processing time will be enormous.
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Fig. 3. Crisis Response Site [11].

2.3. Estimating the Number of Damaged Building
Using Satellite Image

In recent years, “International Disasters Charter” [8]
have been established as international frameworks for
sharing satellite data. The 2019 Typhoon No. 19 also trig-
gered the International Disasters Charter that promoted
the utilization of aggregated satellite data observation [9].

There are two types of satellite images: Synthetic Aper-
ture Radar (SAR) images are observed by radar and opti-
cal images using visible light. The advantage of SAR im-
agery is that it can be used for a wide range of observation
and survey data during nighttime and in bad weather [10].

To identify flooded areas using SAR images, the as-
sumption is that the irradiated microwaves cause specu-
lar reflection, which is shown as a region with very low
backscatter intensity. SAR images before and after flood-
ing are compared, taking advantage of the fact that the
backscatter coefficient decreases in the area that changed
from land to water. After a certain threshold is set, the
area with a backscatter coefficient that exceeds the thresh-
old is extracted as the flooded area. If SAR images before
the inundation are not available, the inundation area can
be identified by temporarily setting the threshold value of
the backscatter coefficient and using optical satellite im-
ages or aerial photographs to identify the area by visual
reading. This method is less accurate [11].

During the Typhoon No. 19 in 2019, the National Re-
search Institute for Earth Science and Disaster Resilience
(NIED) conducted inundation area identification using the
above method, extracted buildings located within the in-
undation area, and published municipality results on the
Crisis Response Site [12]. Fig. 3 shows the status of dis-
closure on the crisis response website. Identification of
the flooded area using SAR images requires specialized
knowledge and skills. Identifying the flooded area using
only SAR images involves a certain amount of time and

cost because it involves visual inspection.

2.4. Identification of Roof Damage Using High Res-
olution Satellite Image and Deep Learning

Research on object detection and image classification
using deep learning from supervised data and artificial
intelligence (AI) has progressed. Research is also be-
ing conducted on the application of these techniques for
disaster damage assessment. This study uses the trans-
fer learning of the VGG-16 (Visual Geometry Group-16)
model developed by the Massachusetts Institute of Tech-
nology (MIT) on high-resolution optical satellite images,
from a previous study conducted by the authors, to iden-
tify roof damage covered by blue sheets [13].

Using this method, high-resolution optical satellite im-
agery from World View-3 is used as a case study of the
2018 Northern Osaka Earthquake. This satellite image
has a resolution of 30 cm/pixel. In this method, an image
taken on August 4, 2018 is prepared, about two months
after the 2018 Northern Osaka Earthquake. For this satel-
lite image, 32-pixel segments were created, each is 10 m
squared and is assumed to contain a house. Each seg-
ment is classified into three categories: “blue sheet roof
images,” “blue roof images,” and “other images.” Teacher
data and validation data are constructed. The VGG-16
model developed by MIT is used to identify the roof dam-
age covered with blue sheets. This model is a convo-
lutional neural network consisting of 16 layers. It was
ranked fourth in the Large Scale Image Recognition Com-
petition (ILSVRC) in 2014. It is also famous for its fea-
tures of simple retraining by transfer learning, which can
be applied to various cases. Although the model is ca-
pable of 1,000 classifications, this case study deals with
three image classifications.

To prevent overtraining from degrading the accuracy of
image discrimination, the number of epochs is set to 60
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Fig. 4. Result of identifying blue sheet with AI.

Table 1. Results of applying the VGG-16 model to satellite
images [13].

based on a preliminary survey, and verification is con-
ducted. As shown in Fig. 4 and Table 1, the accuracy
of the blue sheet discrimination is 93.75%. The repro-
duction rate is 94.74%, and the F-value, which represents
the rate of fit, is 0.94. In other words, in this case, the
VGG-16 model is shown to be a useful method for blue
sheet identification.

2.5. Identification of the Number of Damaged
Buildings Using CyborgCrowd

The authors have been studying the rapid identification
of affected areas during large-scale floods by using crowd-
sourcing, a method to link resources with artificial intel-
ligence (AI) by treating them as supervisory data. This
method solves problems through the division of labor. In
this study, “CyborgCrowd” is the name of the problem-
solving method based on the collaboration of crowdsourc-
ing and AI [14].

In a previous case study on the 2018 torrential rains
in western Japan, inundation areas were identified from
aerial images released by the Geospatial Information Au-
thority of Japan (GSI) [15, 16]. Fig. 5 shows a schematic
of the flow of this method. The aerial images are a
set of images taken at regular intervals. Each image is
crowdsourced for inundation determination. In the crowd-
sourcing process, the respondents select one of the fol-

lowing four options: “Not flooded,” “All flooded,” “Par-
tially flooded or covered by clouds,” or “All covered by
clouds.” The images that are answered as “not flooded,”
“all flooded,” or “all covered by clouds” are used as su-
pervised data for the AI to learn. Then, the AI can make
decisions for the entire area. On the other hand, for im-
ages that are answered as “partially flooded or covered
with clouds,” the image are divided into four parts. The
same questions are asked.

Publicly solicited AI is trained and judged. The specific
model is unknown. The accuracy of AI is not required in
this method. It is assumed that the AI can learn the teacher
data obtained through real time crowdsourcing, and that
the learned AI can determine the entire area of interest.
In addition, it is believed that integrated crowdsourced
results and the AI’s judgment results can determine the
areas that are considered the most affected areas at each
point in time.

This case study focused on Mabi-cho, Kurashiki City,
Okayama Prefecture, which suffered extensive damage
from the 2018 torrential rains in western Japan. Crowd-
sourcing was requested worldwide, and about 600 people
from 11 countries participated in the study. The crowd-
sourced results were obtained in real time, and the AI was
trained in two hours, making inundation judgments for the
entire area at each phase. The results are shown in Fig. 6.
The crowdsourced results and the AI results were verified
separately, and the results are integrated and visualized as
a single map (Fig. 7). By assuming a disaster response
scene, practitioners can unify their situational awareness
based on the results and contribute to decision-making in
the initial response. This verification started at 10:00 a.m.
and, after about four hours, the changes were small and
the results were stable. The number of buildings damaged
by flooding is estimated by overlaying building informa-
tion using GIS on the flooded areas. Since the results
of this case study show a certain level of accuracy, this
method was best positioned for early damage assessment.

2.6. Organizing the Characteristics of Five Meth-
ods and Granularity of Understanding

The five methods described above may be applied in
different ways depending on the type of disaster; they may
not be applicable in some cases. For example, in the case
of dwelling damage assessments for earthquake and wind-
storms, an exterior survey is conducted, followed by an in-
terior survey (as necessary). However, in the case of wind
and flood damage, a lump-sum certification method may
be applied, depending on the inundation situation. On the
other hand, the method for estimating the number of dam-
aged houses based on the identification of inundation ar-
eas may not be applicable to earthquake disasters because
the precondition for the estimation is that the inundation
area directly affects the houses and is a surface trigger for
damage. In this paper, the methods applicable to earth-
quake disasters and those applicable to wind and flood
disasters are analyzed and evaluated together. Consider-
ing the current state of disaster prevention measures, it is
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Fig. 5. Flow of identifying inundation area using CyborgCrowd.

Fig. 6. Learning process of AI from the result of human answers as teacher data [16].

Fig. 7. Transition of detecting flooded area by human and AI [16].
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Table 2. Disasters, purposes, and granularity of each method.

*The batch certification method refers to the “simple identification method based on the depth of inundation” shown by the
Cabinet Office at the time of Typhoon No. 19 in the first year of Reiwa for the purpose of increasing the efficiency and speed of
damage certification surveys for houses [17].

necessary to analyze them separately. However, damage
assessment and response forecasting are tasks that must
be carried out for any disaster. Therefore, this paper does
not distinguish between disaster types, but intentionally
uses the same indicators for evaluation.

In addition, each of the five methods described above
has a different purpose of implementation. The granu-
larity of the understanding of the situation obtained by
these surveys (hereinafter referred to as “the understand-
ing granularity”) differs. In the case of residential damage
assessment surveys and roof damage identification using
drones, the damage status is assessed on a building-by-
building basis. In the estimation of the number of dam-
aged houses based on satellite images, the total number
of damaged houses is obtained by identifying the flooded
area. The granularity of understanding is based on the mu-
nicipality or the flooded area. This is because, the degree
of damage cannot be determined based on the judgment
of inside or outside the inundation area. In other words,
the number of damaged houses derived by applying these
methods is useful for estimating the volume of work to be
handled.

It should be noted that the damage assessment is a prac-
tical task. The survey is used to determine the extent of
damage to houses that will be given the damage certifi-
cate. The other methods compared in this study are not
necessarily essential for governmental agencies to grasp
the extent of the damage. However, when the authors
interviewed representatives from disaster-affected munic-
ipalities, they found that although representatives knew
that a dwelling damage assessment survey was necessary,
they do not know how to estimate the time required to
conduct such a survey. If the area to be surveyed is small,
it is possible to obtain detailed and reliable information

using the damage assessment method as a general survey.
In the case of a local government with little experience
in disaster response, it is not possible to make accurate
estimates for determining the strategy.

Based on these perspectives, Table 2 shows the results
of organizing the characteristics, positioning, and granu-
larity of the five methods discussed in this paper. In ad-
dition, as explained in this section, this study does not
intend to evaluate all the methods equally or to select a
preferred method. It intends to examine whether various
methods can be evaluated using the “time-cost per unit
area” as an index. It should be noted that, when utilizing
the results of this study, it is necessary to select a method
by comparing each objective with the characteristics of
the disaster. Thereafter, it is possible to make a forecast
of the damage assessment by evaluating among the se-
lected methods. However, it is necessary to organize the
methods according to the type of disaster for disaster re-
sponders to utilize these methods in an actual disaster re-
sponse. It is assumed that various methods will be pro-
posed by ICT and technological innovation in the future,
but it is necessary to compile these methods for each type
of disaster and organize them as a package that can be
used in the field.

In this paper, only the “time-cost per unit area” is used
for analysis. When applying various methods, it is nec-
essary to evaluate the introduction and operation costs of
related systems. Even if the same method is used, the sys-
tem and the target data are not necessarily uniquely de-
termined. The cost varies depending on the scale of the
municipality and the functions installed. In light of these
circumstances, this study does not analyze the economic
cost, but only the “time-cost per unit area,” focusing on
“how much damage can be assessed by when,” which is
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needed to determine the response strategy. Future issues
will discuss other costs and points to be considered for
each type of disaster, which are necessary as countermea-
sures and preparation.

3. Calculation of Time-Cost per Unit Area for
Each Method

In this chapter, the time-cost per unit area for each
method presented in the previous chapter is calculated.
However, since the time required for each method for the
same disaster has not been reliably recorded, estimated
values are assigned to some of the methods. The average
value differs by case to examine the possibility of using
time-cost per unit area as an evaluation item.

3.1. Outline of Calculation Method
As mentioned above, each method differs in terms of

prerequisite timing of information acquisition, differences
in post-processing steps, and so on. The application of
each method differs from disaster to disaster, as applica-
tions cannot be started simultaneously for the same disas-
ter. In addition, dwelling damage certification surveys are
conducted on a building-by-building basis; drones cover
a small area and satellite images cover a wide area. In this
study, the number of damaged dwelling units cannot be
compared because the time-cost is evaluated without re-
gard to accuracy. Because of the difference in coverage, it
is necessary to consider the size of each target area in the
analysis.

Therefore, in this study, the time-cost considering the
size of the target area is derived. Once the target dwelling
is clarified in each method, the area is divided into meshes
of 250 m square. The total value of the meshes containing
the target is considered as the area of the target. The mesh
is based on the “Standard Area Mesh” based on the Ad-
ministrative Management Agency Notification No. 143 of
July 12, 1973. The “Quarter Area Mesh (Sixth Standard
Area Mesh)” [18], which is a 250 m mesh, is adopted.
This study develops its analysis based on disaster cases.
Regarding its applicability to other regions, the standard
regional mesh, which can be used in any region of Japan,
was chosen as the basis.

The sixth standard regional mesh containing the target
is aggregated; the area of the region is calculated. The
time-cost per unit area (hours/km2) is calculated by divid-
ing the time required by each method by the area of the
area. On the other hand, if the specific area is known,
the time-cost (hours/km2) is calculated based on the area.
The time-cost per unit area is compared and simulated us-
ing the area as a variable.

3.2. Calculation of Time-Cost per Unit Area
Based on the aforementioned calculation method, the

time-cost per unit area for a total of five methods applied
to three purposes is calculated: “residential damage certi-
fication survey,” “identification of damaged houses using

drones (limited to roof damage),” and “identification of
flooded areas and estimation of the number of damaged
houses based on satellite images.” The details are as fol-
lows.

3.2.1. Determination of the Degree of Damage to
Houses by Residential Damage Assessment
Survey

Information about the location of houses and the activ-
ity time of the residential damage assessment is not avail-
able to the public. Therefore, analysis is implemented
regarding the information obtained by the “Livelihood
Reconstruction Support Collaborative,” in which two of
authors participated, during its past support of disaster-
stricken areas. In this study, two recent disasters are
treated as case studies: the response of Abira Town to the
2018 Hokkaido Iburi East Earthquake and the response
of Murakami City to the 2019 Yamagata-ken-oki Earth-
quake. This selection was made because the efficiency of
the survey method for recognizing damage to dwellings
has been improved. In the survey of dwelling damage,
several teams formed and surveyed the field, but the spe-
cific departure time of each team was not recorded. In
this study, the number of surveyed households was not
recorded.

In response to the 2018 earthquake in Abira
Town, Hokkaido, 2,666 buildings were surveyed by
117 teams/day, with an average of 22.79 build-
ings/group/day. To calculate the size of the area where
the surveyed buildings are located, 219 meshes were ex-
tracted by superimposing the surveyed points and the
sixth mesh using spatial processing with GIS; the size
of the area is 13.69 km2. From this result, the den-
sity of buildings in the area is 194.74 buildings/km2, and
8.54 teams/day/km2 is derived as the coefficient for the
damage assessment in the field.

The response to the 2019 Yamagata-ken-oki earthquake
in Murakami City, Niigata Prefecture was conducted for
644 damaged houses by 10 teams in three days (small-
scale disaster). In other words, the average number of
houses surveyed was 21.47 houses/team/day, which is not
much different from the rate in Abira Town. Similarly, the
area calculated based on the sixth-time mesh is 5.69 km2

(91 meshes), and the number of buildings surveyed is 644,
giving a building density of 113.18 buildings/km2. This
value is smaller than that of Abira Town.

In averaging the results of these two cases, the av-
erage building density of 153.98 buildings/km2 and the
average surveyable buildings number of 22.13 build-
ings/group/day were obtained. From these values,
6.96 groups/day/km2 is derived and divided by average
actual working hours of 7.75 hours (7 hours 45 minutes),
which were calculated subtracting one hour for a lunch
break during an 8:30 a.m. to 5:15 p.m. shift. As a result,
an average time-cost per unit area of 0.90 teams/hour/km2

was derived.
This time-cost does not include the time-cost of sys-

tem maintenance. In the case of Abira Town, the survey
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started on September 14, 2018, one week after the disas-
ter occurred on September 7. The delay was due to the
establishment of a support and relief system and training
implementation. In the case of Murakami City, the sur-
vey started on June 23, five days after June 18, 2019, the
date of the disaster. The local government officials had
experience in providing support and quickly established
the initial response system. Although the gap of number
of the days between the two cases was just two days, it is
necessary to average the number of days and account for
six days as the initial time-cost for establishing the initial
response system.

3.2.2. Roof Damage Identification Using Aerial Im-
ages

In this study, the authors focused on the response to
the 2019 Yamagata-ken-oki earthquake in Murakami City,
Niigata Prefecture, by using a drone to identify damaged
houses. This case study was conducted by two of authors
in the field. Two aerial photographs were taken. In this
paper, the time from aerial photography to orthoimaging
is analyzed, but the data transfer to the backyard that oc-
curs during the process is estimated rather than measured.

The first round of aerial photography took about eight
hours and the area covered was 5.69 km2 (91 meshes), and
the second round of aerial photography took four hours
for the same area. The average time was 0.95 hours/km2.

Next, the data transfer time was derived. The total data
volume was 25,014 MB that is divided by the area of the
area to obtain 4398.07 MB/km2. It is estimated that the
transmission time-cost is 0.98 hours/km2 on the assump-
tion that, for a 10 Mbps bandwidth network in a local city,
the transmission efficiency is 100% and the transmission
speed is 1.25 MB/s.

In orthoimaging, it is necessary to set up about
20 Ground Control Points (GCPs) within the image area
to provide accurate location information and to eliminate
distortions. In this case, the area was divided into six
parts and 20 GCPs were set in each part; 10.79 hours
were needed to identify GCPs. The area is 5.69 km2, so
the average time is 1.90 hours/km2. In addition, machine
processing is required to generate orthorectified images
that take a total of 5.79 hours, resulting in an average of
1.02 hours/km2.

Although one of authors identified 77 incidents of
roof damage from the orthoimages, this covered all
644 houses, regardless of whether they are damaged or
not. This took 4.43 hours, or 0.78 hours/km2 when divid-
ing by the same area.

In summary, the average time required to identify
houses (roofs) damage using aerial drone images was
5.63 hours/km2: 0.95 hours/km2 for aerial photography,
0.98 hours/km2 for data transfer, 1.90 hours/km2 for GCP
identification, 1.02 hours/km2 for machine processing for
orthorectification, and 0.78 hours/km2 for roof damage
identification. Without data transfer, the average time was
4.65 hours/km2. However, it is necessary to consider that,
since the time required for orthorectification depends on

the computer processing power, data processing in the
later stage takes more time.

The aerial survey by drone can be conducted on the
day of the disaster. Yet, that may depend on the weather
conditions on that day. Therefore, the initial time-cost for
establishing the initial response system is zero if drone is
prepared in the affected area.

3.2.3. Estimation of the Number of Damaged Build-
ings Using Satellite Images

The authors have not conducted any case studies on the
identification of disaster areas and the number of dam-
aged buildings using satellite images. As a case study,
the NIED efforts were identified in response to Typhoon
No. 19 in 2019. In this case study, although the author
did not perform crisis response work or analysis, he was
privy to the mailing list for the project progress. The time-
cost for the analysis was extracted using the time stamp of
the mailing list under their permission. The time stamps
of the mailing list are used to extract the time-cost of
the analysis. Although the detailed report of the analysis
work is not shared, the important events are. The needs of
this study were achieved using the time stamps.

According to the efforts of the NIED, the following
flow is used to identify the inundation area and estimate
the number of damaged buildings.

(1) October 12: Typhoon No. 19 hits Japan, causing
heavy rainfall and flood damage in many areas.

(2) October 13, 05:41: Sentinel-1, a radar satellite of Eu-
ropean Space Agency (ESA), observed a wide area
from Kanto to Tohoku.

Subsequently, inundation is estimated by radar im-
ages [Tohoku and Kanto] (analyzed by Kokusai
Kogyo, excluding the sea area).

(3) October 16, 07:22: Inundation estimation area is re-
leased.

(4) October 19, 12:28: Estimated number of inundated
buildings completed.

(5) October 21, 10:00: Calculation of inundation area by
municipality completed.

(6) October 21, 10:00: Calculation of inundation area by
municipality completed.

(7) October 21, 17:00: Coordination within the institute
and among related organizations conducted, and re-
lease of the data began.

(8) October 22, 15:00: The final form is released.

In this situation, the radar satellite captured images the
day after the disaster. It took three days to obtain data and
identify the flooded area. It took about five days to cal-
culate the number of damaged or flooded buildings and
to compile that data by municipality. The final release of
the data is conducted on the 10th day after the disaster.
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Table 3. Machine specification for AI processing.

CPU Intel R© CoreTM i7-6800K CPU @ 3.40 GHz
GPU Geoforce GTX1080 x 2
Memory6 64 GB
OS Ubuntu 16.04

Because of the emergency, 12 hours of work were allo-
cated per day. As a result, the time after the disaster was
120 hours. The time after the radar satellite observation
was 108 hours, and the cost of this study was 108 hours
from the time of observation.

The area captured by the radar image was calculated
from the resolution of the radar image and the number of
pixels in the matrix. The data used in this case study is the
radar image of Sentinel-1 with a resolution of 5 × 5 m.
The area used for the analysis was 35,763 × 57,309 pix-
els. From this information, the area analyzed at the NIED
was 51,238.54 km2. This means that the time-cost per unit
area in this case was 2.11 × 10−3 hours/km2. However,
it should be noted that the time required to obtain satellite
images was difficult to reduce. The time required to take
images may be longer depending on the satellite orbit. In
this case study, the satellite images were obtained in one
day, the shortest time possible. Therefore, this was used
as the initial time-cost.

3.2.4. Roof Damage Identification Using High-
Resolution Satellite Images and Deep Learning

As mentioned above, there are three tasks that incur
time-costs: “mask creation,” “AI training,” and “blue
sheet identification by AI.”

In the case of “mask creation,” one person was assigned
to each area; it took 20 hours. On the other hand, the use
of AI depends on the machine specifications used. The
machine used in this study has the specifications shown
in Table 3.

The re-training of the AI on the VGG-16 model takes
30 minutes because of the foundation of the model. It also
takes three minutes for the AI to identify the blue sheets.

The above time-cost depends on the area. In this case,
an area of 2.1 km2 is used for training and an area of
1.4 km2 is for verification. Of the 3.5 km2, 2.1 km2 is
used for AI training and 1.4 km2 for AI evaluation. The
time-cost per unit area is 3.57 × 10−2 hours/ km2 because
it takes three minutes for the AI to evaluate 1.4 km2.

On the other hand, due to the characteristics of disas-
ters and regions, the accuracy of the existing AI model is
not always high. It is necessary to set the ratio of train-
ing data to validation data to calibrate each type of data.
In the CyborgCrowd case, the result is stable because the
AI learns the correct answer data at 12:00. The correct
answer data created by humans at that time accounted for
30% of the total. In other words, if it is assumed that re-
learning is conducted after a disaster occurs, it is possible
to obtain results with a certain level of accuracy if about

30% of the correct answer data is created by humans and
the remaining 70% is conducted by AI.

Based on the previous information, it is estimated that
the time-cost for mask image creation is 5.71 hours/km2,
and the time-cost for AI relearning is 0.24 hours/km2. In
this case, 0.30 km2 per 1 is used for training and 0.70 km2

per 1 is used for AI. In addition, mask images were pre-
pared for training of AI. The time-cost per unit area is
calculated to be 1.81 hours/km2. However, the initial
time-cost for obtaining satellite images is not clear. Since
commercial satellite images are used, the initial time-cost
of four days is tentatively estimated, because the images
are taken when the victims covered their roofs with blue
sheets in three days and the images are available the next
day.

3.2.5. Identifying the Number of Damaged Buildings
Using CyborgCrowd

This case study focused on flooding in Mabi-cho,
Kurashiki City, Okayama Prefecture. The GSI released
aerial images of areas other than Kurashiki City in
Okayama Prefecture, but it limited images to Mabi Town
in Kurashiki City.

The area covered by the aerial images is 19.5 km from
east to west and 13 km from north to south; the total
area is 253.5 km2. According to the GSI, the aerial pho-
tographs of the area were taken on July 9 in 2018, the day
after July 8, when the torrential rain hits western Japan.
Images were released the next day. CyborgCrowd auto-
mates the image placement and image segmentation for
crowdsourcing, and the work was complete in one hour.
For the release of the aerial images, the initial time-cost
was two days: one day for the aerial shooting and one day
for the release of the images. The shooting range is lim-
ited and the orthorectification process to vertical images is
required. Since there is no time data for this, it is assumed
that the initial time-cost is proportional to the area of the
image, as there is a time basis for developing images for
crowdsourcing. However, since it is proportional to the
area, that time for preparation is excluded from the initial
time-cost in the calculation.

It takes two hours to obtain stable results by crowd-
sourcing. Two hours are needed to train the results as
teacher data and perform the flooding assessment on all
images. In other words, it can be concluded that the entire
flooded area could be grasped in four hours after the im-
ages are prepared. Based on this time and the aforemen-
tioned area, the time-cost per unit area for this method is
calculated to be 1.58 × 10−2 hours/km2. However, this
depends on the number of crowdsourced workers. If the
number of assigned workers is proportional to the area,
the work can be carried out in parallel. In the calculation
of the time-cost per area in this study, it is assumed that
the number of participants in the case is fixed.
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Table 4. Comparison results of time cost per unit area by method.

α [hour/km2] C [hour]
Identification survey of residential victim 0.90 (Assume single team system) 144

Identify damaged houses (roof damage) using drone
5.63 (With data transfer)

0
4.65 (Without data transfer)

Identify inundation area and estimate the number of
2.11 × 10−3 24

suffered houses based on satellite images
Identify roof damage using deep learning with satellite

1.81 96
image with high resolution
(Refer) Identify roof damage using deep learning with

3.57× 10−2 96
satellite image with high resolution (No relearning)

Identify inundation area using CyborgCrowd
1.58× 10−2

48
(Presume 600 workers)

Derived formula: E(x) = ax+C

E(x): Time-cost presumed with methods (hour)
x: Size of disaster area (km2)
a: Time-cost per unit area (hour/km2)
C: Initial time-cost required for establishing initial moving body (hour)

4. Comparison of Time-Cost Estimation and
Discussion

Table 4 shows the primary equation of the time-cost
per unit area for each method calculated in the previous
section. As shown in Table 4, although the methods and
the accuracy of the results are different, the efficiency of
each method can be grasped by comparing the time-cost
per unit area. By comparing the time-cost per unit area,
the efficiency of each method can be understood. Using
this result as a basis, it will be possible to compare and
verify various methods using the same evaluation items
in the future. However, it should be noted that the initial
conditions are different. This should be carefully exam-
ined in future studies.

Using the results in Table 4, Fig. 8 is obtained when the
results are simulated in terms of area. The slope in Fig. 8
is smaller for the method with lower time-cost per unit
area. In other words, even if the initial time-cost is high,
if the area to be assessed is large, the total time-cost can be
reversed depending on the method. By using Fig. 8, the
final time-cost changes can be seen. Therefore, method
must be selected according to the target area. Based on
this graph, the following conclusions were made:

1) Overall, the method of “identification of flooded ar-
eas and estimation of the number of damaged houses
based on radar satellite images” is overwhelmingly
quick in dealing with a wide area of damage. This
can be attributed to the fact that radar satellite images
can be taken over a wide area and that the method is
already established to some extent in the subsequent
processing process. The initial time-cost of 24 hours
is reversed in the case of using a drone and the case

of using radar satellite images in about five. In this
case study, the total time-cost per unit area for the
method using radar satellite imagery is smaller when
the area is larger than five, while the total time-cost
per unit area for the method using drones is smaller
when the area is smaller than five. However, the ac-
curacy of radar satellite imagery is not as high as
that of other methods. Yet, it can be useful for ob-
taining an overview of the extent of flooded areas
and the approximate number of damaged buildings.
In addition, it should be noted that the use of multi-
ple drones changes the speed of the survey, but also
changes both the initial time-cost and the time-cost
of the survey (because of the need for coordination
among the drones).

2) The next quickest method is to use CyborgCrowd to
identify the flooded area and estimate the number of
damaged buildings. As shown in Table 3, the coeffi-
cient proportional to the area is larger than that of the
method using radar satellite images, but smaller than
that of other methods on the order of 100. There-
fore, as the area to be assessed becomes larger, the
total time-cost will be reversed, even if the initial
time-cost is different. In the case of the survey in
this study, the total time-cost becomes smaller than
that of the drone method at the threshold of about
10 km2 (strictly speaking, nine). In other words,
about 10 km2 is a guideline for using CyborgCrowd
in the same scale. However, the method using Cy-
borgCrowd is based on the premise that the GSI re-
leases vertical photographs taken by aerial photogra-
phy. However, in the case of Typhoons No. 15 and
No. 19 in 2019, the vertical images are not released.
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Fig. 8. Time-cost simulation results per unit area depending on methods.

The oblique images have been released. However, in
the case of Typhoons No. 15 and No. 19 in 2019,
oblique photographs are made public, but vertical
photographs are not yet available. When aerial pho-
tographs are available and input data can be obtained,
the accuracy and granularity of the method is higher
than that of the method using radar satellite images.
It can be concluded that the method is useful for
wide-scale disasters.

3) The method using high-resolution optical satellite
images has a large initial time-cost, but the total
time-cost can be kept small even for a relatively
small area. The method using high-resolution op-
tical satellite images has a large initial time-cost, but
the total time-cost is small even in a relatively small
area. In the case of the method using high-resolution
optical satellite images, the time-cost of creating su-
pervisory data for deep learning is significant. The
total time-cost increases as the target area becomes
larger for more precise results. For example, Fig. 8
shows that the damage assessment method is more
reliable and faster when the target area is larger than
53 km2. On the contrary, if the area is less than
53 km2, high-resolution optical satellite images can
be used to understand the damage, although it is lim-
ited to roof damage. Particularly, since it takes time
to establish a system for a survey method to recog-
nize dwelling damage, it is considered effective to
utilize this time to capture the whole picture using
high-resolution optical satellite images and to use
them to determine a survey policy. The case with no

relearning is shown by the dashed line in Fig. 8. In
the case where sufficient learning is conducted in ad-
vance, the survey method is faster than the dwelling
damage recognition method, regardless of the area.
This is true, although it is limited to roof damage.
However, it should be noted that the results of this
study use an average of 6.96 teams/day/km2, because
the survey speed varies depending on the size of the
team mobilized when using the residential damage
certification survey method.

4) Finally, the drone method used in this study has 4K
resolution, which enabled us to capture high qual-
ity aerial images of the damage of each building.
However, due to the drone characteristics, the aerial
photography range is narrow, the flight time is lim-
ited, and post-processing is required at this point.
Therefore the time-cost tends to be high. How-
ever, compared to satellite images and aerial images,
drone image quality is more granular. For example,
even a single roof tile of a building can be identi-
fied. In other words, even minor damage can be ex-
tracted. Practitioners who are responsible for on-site
response can survey with the same quality and accu-
racy from the air as from the ground. In other words,
this method highly complements the ground survey.
Since this method is highly dependent on the area,
it is considered effective to identify the target areas
using other methods and then use the drone (with the
ground survey) to conduct a detailed survey.

5) One of the findings obtained through the above dis-
cussion is that it is important to select the correct
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method according to the situation and purpose. Ad-
ditionally, it is important to pay attention to the ac-
curacy and granularity of the results obtained and the
degree of accuracy of each method. In the period
immediately after a disaster strikes, there is an infor-
mation gap about damage. Despite its accuracy or
granularity, satellite imagery is an effective method
for surveying the initial damage. After a certain
period, various types of response will be required.
Each will have its own requirements for accuracy
and granularity. In addition to selecting a method
based on these requirements, time should be used to
determine which method is needed to give a strate-
gic response. In particular, the initial dwelling dam-
age survey is needed to support disaster victims re-
build. It must be conducted at the granular level of
each building. In this case, satellite imagery is in-
sufficient. It is necessary to combine ground-based
surveys with aerial photography or drone surveys to
assess the damage. In this way, the optimal combi-
nation of the two methods according to the situation
and purpose can be ascertained.

5. Conclusion

The purpose of this study is to estimate the time-cost
of damage assessments to execute disaster response effi-
ciently and effectively. In addition to the damage assess-
ment survey based on the guidelines of the Cabinet Office
and conducted by the affected municipalities, research
and implementation of the following methods are being
conducted: identifying the number of damaged houses
from drone and satellite images using ICT, and estimating
the flooded area and the number of flooded buildings us-
ing CyborgCrowd. Although the accuracy of the methods
studied has been compared in terms of their reproducibil-
ity and suitability, the comparison in terms of time and
cost has not. For practitioners who will use these meth-
ods, it is important to know in advance the accuracy of the
available methods and when the methods will provide the
results needed for a damage assessment or estimation.

In this study, the time-cost is calculated per unit area for
five methods that can determine the area of interest and
the time-cost required for processing. Specifically, the
area of the target area and the time required for the work
based on actual data from past disasters are surveyed. It
is modeled after the time required for preparation for the
work, as the initial time-cost. The other work time is pro-
portional to the area. This model is taken as a simple lin-
ear equation. The estimated area of damage is used as a
variable to estimate the time required to achieve the re-
sults of each method.

The time-cost per unit area is calculated to be 0.90
teams/hour/km2 for residential damage assessment and
5.53 hours/km2 for the drone survey, including data trans-
fer and 4.55 hours/km2 without data transfer. In the case
of satellite images, two cases are investigated and clari-
fied. The time required for radar satellite images is 2.11

× 10−3 hours/km2, while the time required for high-
resolution optical satellite images is 1.81 hours/km2, in-
cluding deep retraining. In the case of high-resolution op-
tical satellite images, the time without relearning is 3.57
× 10 −2 hours/km2, which is extremely efficient. On the
other hand, the latest method based on crowdsourcing and
AI is 1.58 × 10−2, which is not as fast as radar satellite
images but is the second fastest among the five methods.
However, each method has its own initial time-cost, which
must be taken into account. In terms of the granularity and
accuracy of the survey, the survey of damage to dwellings
is the most detailed and accurate. However, satellite im-
ages have rough granularity and the accuracy is not high.
In this study, only the time-cost is analyzed, but it is nec-
essary to verify the accuracy as well.

Each of the methods used in this study has its own pur-
pose and position, as shown in Table 2. Based on the
characteristics of the disaster, it is necessary to use the
available methods appropriately. In addition, to imple-
ment each method, the use of information systems, ad-
ditional personnel, and materials and equipment may be
required for data management and operational efficiency.
In addition, not only the time-cost but also the economic
costs should be analyzed, such as the introduction cost
and operation cost of the system and materials, etc. In
practice, it is necessary to include these economic costs
in the selection of work implementation methods. The re-
sults of this study are analyzed only by evaluating time.
Future, studies should analyze other types of costs. In
addition, the data on time used in this study are not com-
pletely recorded in minutes; some are estimated. Through
this study, new knowledge is obtained by analyzing time.
To obtain more precise results, the recording method of
time data and developing a tool to support it are reviewed.
Depending on the scale of the disaster, it is necessary to
estimate the initial time-cost for environmental prepara-
tion, even if the time-cost for implementation remains the
same. Knowledge of future disasters is accumulated and
research on how to estimate the initial time-cost for vari-
ous disaster scales is conducted.

Soon, Japan is expected to experience a widespread na-
tional disaster. this study prioritizes methods according to
efficiency, when the disaster area is large. Future studies
plan to improve the accuracy of the time-cost estimation
based on the results of this research, and to conduct anal-
ysis to match the granularity and accuracy of the assessed
damage.
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