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The density-based spatial clustering of applications
with noise (DBSCAN) algorithm is a well-known algo-
rithm for spatial-clustering data point clouds. It can
be applied to many applications, such as crack detec-
tion, rockfall detection, and glacier movement detec-
tion. Traditional DBSCAN requires two predefined
parameters. Suitable values of these parameters de-
pend upon the distribution of the input point cloud.
Therefore, estimating these parameters is challenging.
This paper proposed a new version of DBSCAN that
can automatically customize the parameters. The pro-
posed method consists of two processes: initial param-
eter estimation based on grid analysis and DBSCAN
based on the divide-and-conquer (DC-DBSCAN) ap-
proach, which repeatedly performs DBSCAN on each
cluster separately and recursively. To verify the pro-
posed method, we applied it to a 3D point cloud dataset
that was used to analyze rockfall events at the Puig-
gcercos cliff, Spain. The total number of data points
used in this study was 15,567. The experimental re-
sults show that the proposed method is better than
the traditional DBSCAN in terms of purity and NMI
scores. The purity scores of the proposed method and
the traditional DBSCAN method were 96.22% and
91.09%, respectively. The NMI scores of the proposed
method and the traditional DBSCAN method are 0.78
and 0.49, respectively. Also, it can detect events that
traditional DBSCAN cannot detect.

Keywords: DBSCAN, divide and conquer, grid density,
3D point cloud, rockfall detection

1. Introduction

Density-based spatial clustering of applications with
noise (DBSCAN), proposed in 1996, is a well-known
clustering algorithm that labels a group of data based on

Fig. 1. Illustration of DBSCAN parameters.

density [1, 2]. This algorithm has been applied in many
fields of study and has been improved for different objec-
tives. For example, DBSCAN can be used to analyze 3D
point clouds for rockfall detection [3, 4], glacier move-
ment detection [5], and flight anomaly detection [6].

The DBSCAN algorithm requires two parameters: ε
and minPts, which substantially affect the clustering
performance. The parameter ε is the largest Euclidean
distance that allows two points to be in the same neigh-
borhood.

The parameter minPts defines the minimum number
of points in an ε-neighborhood circle centered at a point.
A graphical representation of these two parameters is il-
lustrated in Fig. 1. In this figure, points p and q are in
the ε-neighborhood circle, while p and r are not. There
are seven points in the same ε-neighborhood circle with
p. If the number of points in the same ε-neighborhood
with p is greater than or equal to minPts, we say that
the points around p are dense. Otherwise, they are sparse.
Suitable values of the parameters depend on the distribu-
tion of data. Thus, it is sometimes difficult to determine
the appropriate parameters in advance.

In the literature, many parameter-estimation meth-
ods have been proposed. For example, Karami and
Johansson used the differential evolution algorithm to find
the optimal parameters of DBSCAN [7]. Even though the

Journal of Disaster Research Vol.16 No.4, 2021 579

https://doi.org/10.20965/jdr.2021.p0579

© Fuji Technology Press Ltd. Creative Commons CC BY-ND: This is an Open Access article distributed under the terms of 
the Creative Commons Attribution-NoDerivatives 4.0 International License (http://creativecommons.org/licenses/by-nd/4.0/).

http://creativecommons.org/licenses/by-nd/4.0/


Dillon, P. et al.

parameters obtained from the differential evolution work
well, the cost function of the differential evolution needs
knowledge about the ground truth. Thus, it might not be
practical.

Darong and Peng proposed a grid-based DBSCAN al-
gorithm, where the parameters were obtained from grid
analysis [8]. Micheletti et al. used the k-nearest neigh-
bors algorithm to estimate the parameters [5]. McInnes
et al. proposed a new version of DBSCAN, called hier-
archical DBSCAN or HDBSCAN [9]. HDBSCAN per-
forms DBSCAN with many different ε values and then
integrates the results to find the most stable clustering.
However, it requires the smallest cluster size as one of
its inputs. Lai et al. applied a new optimizer based on
the multiverse optimization (MVO) theory to estimate
the DBSCAN parameters [10]. The simulation results
showed that the MVO could quickly find the parameters,
and the clustering accuracy was high.

Once the parameters are obtained from the parameter
estimation model, these methods apply the constant pa-
rameters to the input data. The constant-parameter-based
DBSCAN might not cluster data points correctly if the
cluster’s density varies, as shown in Section 4. Therefore,
this paper implements a new version of DBSCAN that can
handle this case and customize the parameters automati-
cally without a priori knowledge of the ground truth.

To verify the proposed method, we applied the pro-
posed algorithm to a 3D point cloud dataset that was used
to analyze and identify rockfall events at the Puiggcercos
cliff, Catalonia, Spain. The result of this analysis can be
used to construct a rockfall frequency map, which is cru-
cial for hazard or risk assessment [11, 12].

The rest of this paper is organized as follows. Sec-
tion 2 reviews the traditional DBSCAN algorithm. Sec-
tion 3 proposes a new version of the DBSCAN algorithm,
which is based on the divide-and-conquer approach. Sec-
tion 4 provides the details of our experiments and results.
The discussion is in Section 5, and Section 6 concludes
this work.

2. DBSCAN

DBSCAN is a spatial clustering algorithm based on
data point density [1]. The algorithm assigns a group of
points that are close to each other to a cluster. In other
words, the points in a high-density region are grouped and
called a cluster. However, a point that is not a member of
any cluster is assigned as noise.

Let p and q denote points in a point cloud PPP, and let
d(p,q) be the Euclidean distance between points p and q.
The set of points that have distances to point p that are
less than or equal to a predefined distance ε is denoted
by Nε(p), which is called the ε-neighborhood of point p.
That is,

Nε(p) = {q ∈ PPP | d(p,q)≤ ε}. . . . . . (1)

Let |Nε(p)| denote the number of points in the ε-
neighborhood of point p, and let minPts be a predefined

positive integer. If |Nε(p) | ≥ minPts, point p is a core
point. If p∈ Nε(q) and q is a core point, point p is directly
density-reachable for point q.

Point p is density-reachable from point q if there is a
sequence of points (i.e., q, p1, p2, . . . , pn, p) that satisfies
the following three conditions:

• pi+1 is directly density-reachable from pi,

• p1 is directly density-reachable from q, and

• p is directly density-reachable from pn.

If pi is between p and q and both p and q are density-
reachable from pi, point p is density-connected to point
q.

Let CCC denote a cluster of PPP. DBSCAN uses the follow-
ing rules to cluster points in PPP.

• If p ∈CCC and q is density-reachable from p, then q ∈
C.

• For any p and q in CCC, p is density-connected to q.

The DBSCAN algorithm discovers a cluster by choos-
ing a core point and retrieving all points that are density-
reachable from that core point [1]. Any point that is out-
side of all clusters is assigned as noise. The DBSCAN
algorithm can be summarized by the following steps [2].

1 Find Nε(p) for all p in PPP.

2 Identify core points.

3 Connect neighboring core points to form clusters.

4 Add non-core points to a nearby cluster if the cluster
is an ε-neighborhood.

3. Proposed Method

The general idea behind our proposed method is that we
first roughly estimate the DBSCAN’s parameters. Then,
the DBSCAN algorithm is repeatedly performed on each
cluster separately until the number of points labeled as
noise outnumbers the other non-noise groups. To under-
stand the proposed method clearly, we first define some
symbols unambiguously as follows. Let PPPn be an n× 4
matrix representing a point cloud of n data points obtained
from a terrestrial laser scanner. Each data point is repre-
sented by a quadruple (x,y,z, I), where (x,y,z) is the co-
ordinate of the data point in the Cartesian system, and I is
the reflected laser intensity.

Let PPPn∗ denote a point cloud with labeled clusters,
which is obtained by applying the DBSCAN algorithm
with the parameters minPts and ε to PPPn, i.e., PPPn∗ =
DBSCAN(PPPn,minPts,ε). Thus, PPPn∗ can be represented
by an n× 5 matrix, where each data point has an addi-
tional element that indicates a cluster ID. That is, one data
point is represented by a quintuple (x,y,z, I,c), where c
is the cluster ID. In general, c ∈ {0,1,2, . . .}, and a data
point that is labeled with c = 0 is recognized as noise in
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Fig. 2. Proposed method.

the DBSCAN algorithm [1]. We also denote the greatest
cluster ID number of PPPn∗ by cmax(PPPn∗).

Let Nc(PPPn∗) denote the number of clusters of PPPn∗, and
let PPPn∗

i be an n× 4 matrix representing a point cloud of
all data points labeled with i, where i ≤ Nc(PPPn∗), and each
point in PPPn∗

i is represented by a quadruple (x,y,z, I).
Let Np(PPPn∗

i ) be the number of data points of PPPn∗
i , i.e.,

Np(PPPn∗
i ) is equal to the number of rows of PPPn∗

i . Thus, it is
straightforward to state that ∑∀i Np(PPPn∗

i ) = n.
The proposed method consists of two processes, as il-

lustrated in Fig. 2. First, 3D point cloud PPPn is analyzed
by grid analysis to estimate the appropriate initial parame-
ters (minPts and ε) of the DBSCAN algorithm. Second,
the divide-and-conquer-based DBSCAN (DC-DBSCAN)
process takes PPPn, minPts, and ε as the inputs and re-
turns the point cloud with labeled clusters as the output.
This DC-DBSCAN process is based on the DBSCAN al-
gorithm and a recursive step. The DBSCAN algorithm
takes PPPn, minPts, and ε as the inputs and produces PPPn∗
as the output. The recursive step takes PPPn∗

iii , minPts, and
ε as its inputs and returns the point cloud with labeled
clusters as the output.

The DC-DBSCAN process operates as follows. Let
QQQm, where m is the total number of data points,
minPtsQ, and εQ be the inputs of DC-DBSCAN. First,
it performs DBSCAN(QQQm,minPtsQ,εQ) and obtains
QQQm∗. Then, it checks that the stop criterion for QQQm∗,
i.e., Np(QQQm∗

0 ) is not the smallest among Np(QQQm∗
i ) for

i �= 0. In other words, the stop criterion is satisfied
when the noise cluster is not the smallest cluster of
QQQm∗. If it is (in this case), the point cloud obtained

Fig. 3. Flowchart of the grid analysis.

from DBSCAN(QQQm,minPtsQ,εQ −Δ), where Δ is an ε-
decrement step (which is normally set to 1), is a part of
the resulting point cloud with labeled clusters.

In contrast, if Np(QQQm∗
0 ) is the smallest, the point cloud

QQQm∗ is split into cmax(QQQm∗) point clouds: QQQm∗
1 , QQQm∗

2 , . . . ,
and QQQm∗

cmax(QQQm∗). Then, each QQQm∗
i for i = 1 to cmax(QQQm∗)

is separately fed to DC-DBSCAN with the parameters
minPtsQ and εQi , where εQi = εQ − Δ. These recur-
sive loops are terminated because as the parameter ε gets
smaller, the number of points assigned as noise increases.
Consequently, the stop criterion is satisfied for all loops.

When all recursive loops stop repeating themselves, the
combined point cloud with labeled clusters is returned by
the proposed method.

Besides DC-DBSCAN, another crucial part of the pro-
posed method is the initial-parameter estimation based on
grid analysis. A flowchart of this process is sketched in
Fig. 3, and it works as follows.

First, the 3D point cloud PPPn is spatially divided into
nine equal rectangular boxes, as shown in Fig. 4 (top).
Second, if the variance of the number of points in those
boxes is greater than the median of the number of points,
the box with the maximum number of points is selected.
These two steps are repeatedly performed on the desig-
nated box, as depicted in Fig. 4 (bottom). When the loop
is broken, ε is set to the maximum between the width and
the height (in cm) of the last selected box.

4. Experiment and Result

To evaluate the performance of the proposed method,
we conducted experiments with an open dataset obtained
from a terrestrial laser scanner (Optech’s Intelligent Laser
Ranging and Imaging System or ILRIS3D), provided
by Abellan et al. [3, 4, 13]. The dataset contains data
points representing the 3D surface of the Puiggcercos
cliff, Catalonia, Spain, as shown in Fig. 5. The maxi-
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Fig. 4. Grid analysis: dividing the point cloud spatially
into nine boxes (top) and dividing repeatedly for three times
(bottom).

mum width and height of the cliff are 73.77 and 48.42 m,
respectively. Analyzing two or more 3D point clouds
recorded at different times shows the surface displace-
ment. Thus, these point clouds can be applied for rockfall
detection, rock-volume estimation, crack detection [4],
and mass movement of a rock glacier [5]. In our exper-
iments, we modified the dataset by using open-source
3D point cloud editing and processing software, namely
CloudCompare [14], to generate four point-clouds that
can be analyzed further for rockfall detection. The mod-
ified point-clouds used in our experiments are shown in
Fig. 6, and each of them consists of eight rockfall events.

The dimensions of rockfall events from Event 1 to
Event 8 in Scenario (a) are (80,103), (126,145), (63,54),
(58,37), (68,40), (70,59), (96,95), and (50,75), respec-
tively. The dimension of the rockfall is measured by the
width and the height of the smallest rectangle that can fit
it in. We use (width,height) (in cm) to denote the di-
mension of such a rectangle. An illustration example of a
rockfall event (85,40) is shown in Fig. 7. The point den-
sities of these events are approximately equal. The events
are easily clustered since they are not close to each other.

The dimensions of rockfall events from Event 1 to
Event 8 in Scenario (b) are (48,53), (131,135), (65,86),
(153,79), (125,82), (45,43), (57,51), and (88,32), re-

Fig. 5. 3D point cloud (top) of the surface of Puiggcercos
cliff (bottom), Catalonia, Spain.

spectively. The point densities of these events are approxi-
mately equal. The events are more difficult to cluster since
they are close to each other.

The dimensions of rockfall events from Event 1 to
Event 8 in Scenario (c) are (68,23), (49,67), (73,79),
(85,40), (100,56), (91,42), (131,135), and (134,69), re-
spectively. The point densities of these events are differ-
ent. The events are easy to cluster since they are not close
to each other.

The dimensions of rockfall events from Event 1 to
Event 8 in Scenario (d) are (87,55), (34,70), (127,59),
(190,138), (71,67), (85,66), (128,62), and (45,43), re-
spectively. The point densities of these events are differ-
ent. The events are more difficult to be clustered since
they are close to each other.

As mentioned earlier, DBSCAN is used to recog-
nize rockfall events [4]. However, the effectiveness
of DBSCAN depends on two parameter values (i.e.,
minPts and ε) that should be appropriate for the input
dataset. Our primary aim for the following experiments
was to confirm that the proposed method can adaptively
and automatically adjust the parameters according to the
input dataset. Note that, in our experiments, noise (or
clutter) was removed from the input point cloud during
a preprocessing process using CloudCompare.

We evaluated the effectiveness of the proposed method
by using two evaluation measures: purity and normalized
mutual information (NMI). The purity is the ratio of the
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Fig. 6. Four point clouds from the larger point cloud in Fig. 5.

Fig. 7. Example of a rockfall event (85,40).

sum of all true positives to the total number of data points.
The purity λ is defined as

λ =
1
n

k

∑
h=1

max
1≤ j≤l

{n1
h,n

2
h,n

3
h, . . . ,n

j
h}, . . . . (2)

where n is the total number of points, l is the total number
of ground-truth clusters, k is the total number of clusters
labeled by the algorithm, and n j

h is the number of points
that are labeled by the algorithm as cluster h and belong
ground-truth cluster j. The higher the value of λ , the bet-
ter the algorithm’s effectiveness.

The NMI score is defined as follows [15, 16]. Let X
be a discrete random variable representing a ground-truth
label (or ground-truth cluster ID) of points in the point
cloud. Given that the ground truth consists of u + 1 clus-
ters, the possible outcomes of X are 0,1, . . . ,u, where each

outcome is a ground-truth cluster ID. Let Y be a discrete
random variable representing a cluster ID that is labeled
by the clustering algorithm. Given that the algorithm clus-
ters the point cloud into v + 1 clusters, the possible out-
comes of Y are 0,1, . . . ,v, where each outcome of Y is a
cluster ID. The NMI score I∗(X ;Y ) is defined by

I∗(X ;Y ) =
2 · I(X ;Y )

H(X)+H(Y )
, . . . . . . . . (3)

where I(X ;Y ) is the mutual information between X and
Y , H(X) is the entropy of X , and H(Y ) is the entropy of
Y . These terms are defined as follows.

H(X) = −
u

∑
i=0

p(X = i) · log (p(X = i)), . . . (4)

and

p(X = i) =
xi

n
, . . . . . . . . . . . . . (5)

where xi, for i = 0 to u, is the total number of points in
the i-th ground-truth cluster, and n is the total number of
points in the point cloud.

H(Y ) = −
v

∑
i=0

p(Y = i) · log (p(Y = i)), . . . (6)
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Table 1. Evaluation comparison between the proposed
method and DBSCAN [4] for Scenario (a).

Event
number ε [cm] The number of points

Proposed
method

DBSCAN [4]
(ε = 10 cm)

Ground
truth

1 14 488 488 488
2 6 1028 1228 1028
3 9 299 568 299
4 6 200 0 200
5 9 269 0 269
6 14 329 329 329
7 14 887 887 887
8 14 342 342 342
λ 100% 87.79% 100%

NMI score 1 0.44 1

and

p(Y = i) =
yi

n
, . . . . . . . . . . . . . (7)

where yi, for i = 0 to v, is the total number of points in the
i-th cluster that is labeled by the algorithm.

I(X ;Y ) = H(X)−H(X |Y ), . . . . . . . . (8)

H(X |Y ) =
v

∑
j=0

−p(Y = j) ·H(X |Y = j), . . . (9)

and

H(X |Y = j) =
u

∑
i=0

p(X = i|Y = j) · log (p(X = i|Y = j)),

. . . . . . . . . . . . . . (10)

where p(X = i|Y = j) is a probability that X = i given that
Y = j, for i = 0 to u and j = 0 to v. The value of I∗(X ;Y )
is in the interval [0,1], and it equals 1 if and only if all
ground-truth clusters and clusters labeled by the algorithm
exactly coincide.

In this work, we compare the proposed method, where
minPts is a constant and is set to 5, to traditional
DBSCAN with the parameters minPts = 5 and ε = 10,
as recommended by Tonini and Abellan [4]. The experi-
mental evaluations for all four point clouds are shown in
Table 1 to Table 4. The first part of each table shows the
numbers of clustered points for events in each Scenario.
Its second column (ε) shows the ε values obtained from
the proposed method. The second part of each table shows
the purity score λ and the NMI score. It can be seen that,
in most cases, the proposed method outperformed the tra-
ditional DBSCAN method [4].

The proposed method’s average purity score was
96.22%, whereas that of traditional DBSCAN was
91.09%. The proposed method has higher purity scores
in Scenarios (a), (b), and (d), but it has a slightly lower
score in Scenario (c). We discuss these results in the next
section.

An example of results is shown in Fig. 8, which is from
Scenario (a) of Fig. 6. It can be seen that DBSCAN
could not detect two rockfall events (i.e., Events 4 and

Table 2. Evaluation comparison between the proposed
method and DBSCAN [4] for Scenario (b).

Event
number ε [cm] The number of points

Proposed
method

DBSCAN [4]
(ε = 10 cm)

Ground
truth

1 3 248 449 247
2 6 1025 1025 1025
3 6 758 758 513
4 6 855 855 855
5 6 931 931 931
6 6 159 159 159
7 6 0 0 245
8 3 201 0 202
λ 94.11% 89.30% 100%

NMI score 0.67 0.31 1

Table 3. Evaluation comparison between the proposed
method and DBSCAN [4] for Scenario (c).

Event
number ε [cm] The number of points

Proposed
method

DBSCAN [4]
(ε = 10 cm)

Ground
truth

1 10 113 113 113
2 17 225 225 225
3 17 502 502 502
4 28 306 306 306
5 10 469 469 469
6 4 219 225 225
7 5 654 654 654
8 5 339 414 414
λ 97.21% 100% 100%

NMI score 0.87 1 1

Table 4. Evaluation comparison between the proposed
method and DBSCAN [4] for Scenario (d).

Event
number ε [cm] The number of points

Proposed
method

DBSCAN [4]
(ε = 10 cm)

Ground
truth

1 6 603 894 304
2 6 176 0 176
3 32 589 589 589
4 32 2283 2283 2283
5 32 419 419 419
6 6 0 0 299
7 15 455 455 455
8 6 115 0 115
λ 93.56% 87.28% 100%

NMI score 0.59 0.21 1

5), whereas the proposed method could detect all of them.
This is because traditional DBSCAN uses a constant ε for
one point cloud while the proposed method benefits from
the adaptive ε , as shown in Table 1.
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Fig. 8. Point clouds representing the rockfall events
(Fig. 6(a)): clusters obtained from the proposed method
(top), clusters obtained from the traditional DBSCAN (mid-
dle), and the ground-truth clusters (bottom). In these figures,
the same color indicates the same cluster. It can be seen
that the traditional DBSCAN cannot separate Event 3 from
Event 5 and Event 2 from Event 4. In contrast, the proposed
method could separate these events.

5. Discussion

This section discusses two issues concerning the per-
formance and the potential of the proposed method. First,
in Scenario (c), the proposed method’s purity score and
NMI score are slightly lower than those of DBSCAN in
two rockfall events (i.e., Event 6 and Event 8), as shown
in Table 3. In Event 6, the proposed method missed six
out of 225 data points, and in Event 8, it missed five out
of 414 data points. Even though these misses are not of
significance, it is important to investigate the effects.

The proposed method uses the adaptive epsilon strat-
egy, i.e., the parameter ε can vary from cluster to cluster
by applying the recursive loop with a stop criterion, as de-
tailed in Section 3. This missing-point case occurs when
the algorithm terminates the loop too slow. For Event 6 of
Scenario (c), it stopped after ε went down to four. Thus,
some points at the edge were missing, as shown in Fig. 9.
Therefore, the stop criterion plays a crucial role. If the

Fig. 9. Missing points in a cluster due to the smaller ε
of the proposed method (top) and the ground-truth cluster
(bottom). Note that the missing points in the top panel are
bounded by the black line.

algorithm stops too fast (i.e., it stops while the value of
ε is large), it may not be able to separate two supposedly
different clusters, as shown in Fig. 8 (middle). Thus, this
kind of trade-off should be investigated further, to formu-
late a better stop criterion.

Second, when we look at Event 3 and Event 7 of Sce-
nario (b), both methods could not separate Event 7 from
Event 3. These two events are not easy to separate, even
by the human eye. However, if we try to apply the same
strategy that we used with ε to minPts after we obtain
the customized ε (i.e., performing DC-DBSCAN recur-
sively with an increase in minPts), we found that it is
possible to separate Event 7 from Event 3, as shown in
Fig. 10. This extension will be studied further in the fu-
ture.

6. Conclusion

This paper proposed a version of DBSCAN that can
automatically customize parameter ε for each cluster in a
point cloud. The proposed method consists of two pro-
cesses: initial parameter estimation based on grid anal-
ysis and DBSCAN based on the divide-and-conquer ap-
proach (DC-DBSCAN). DC-DBSCAN repeatedly per-
forms DBSCAN on each cluster separately and recur-
sively. Therefore, the suitable parameter ε for each group
of the point cloud might not be a constant. The experi-
mental results showed that the purity score and the NMI
score of the proposed method were higher than those of
traditional DBSCAN. This paper also discussed the po-
tential of the proposed method in clustering two rockfall
events that were close to each other and the challenge in
separating them.
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Fig. 10. The proposed method and the traditional DBSCAN
cannot separate two events (top). However, when minPts
is increased and go to 8, two clusters can be recognized (bot-
tom).
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