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In November 2013, Super Typhoon Haiyan (Yolanda)
hit the Philippines. It caused heavy loss of lives and
extensive damages to buildings and infrastructure.
When collapsed buildings are focused on, it is inter-
esting to find that these buildings did not collapse for
the same reasons after the landfall of the typhoon and
storm surge. The objective of this study is to develop a
statistical model for building damage due to Super Ty-
phoon Haiyan and its storm surge. The data were col-
lected in collaboration with Tanauan Municipality, the
Philippines. The data for the inundation map were ob-
tained by field surveys conducted on-site to determine
the cause of the damages inferred from satellite data.
The maximum wind speed was derived from the Hol-
land parametric hurricane model based on the Japan
Meteorological Agency (JMA) typhoon track data and
the inundation depth of storm surge was calculated us-
ing the MIKE model. Multinomial logistic regression
was used to develop a model to identify the significant
factors influencing the damage to buildings. The result
of this work is expected to be used to prepare urban
plans for preventing damage from future storms.

Keywords: building damage, statistical analysis, storm
surge, Super Typhoon Haiyan

1. Introduction

The Philippines is the most storm-exposed country on
earth [1]. The average number of tropical storms in the

Philippines that make landfall is 8 or 9 storms per year [1].
Super Typhoon Haiyan-local “Yolanda” was one of the
strongest typhoons on record in the Philippines [2, 3]. It
formed in the low-pressure region in the West Pacific
Ocean on November 2, 2013, and it was equivalent to a
Category 5 on the Saffir-Simpson hurricane scale assessed
by the Joint Typhoon Warning Center (JTWC) [4]. On
November 8, 2013, Super Typhoon Haiyan hit the eastern
part of the Philippines consisting of Tacloban, Palo, and
Tanauan [5, 6].

Moreover, its wind blew seawater onto the shore.
A storm surge was generated due to Super Typhoon
Haiyan’s strong winds. Tacloban City had the highest
storm surge, about 6 meters tall. In total, 220,000 peo-
ple became homeless [7]. More than 16 million people
were affected, and 6,300 people died [8]. Around 1.14
million buildings were damaged [8]. In addition, the total
financial loss of infrastructure, fisheries, and agriculture
was valued at more than 39.8 billion PHP, approximately
0.77 billion USD [8]. The super typhoon and storm surge
caused massive impacts to both lives and property. Conse-
quently, many researchers have studied this typhoon and
storm surge in order to reduce future storms’ impacts.

The purpose of this research is to develop a statistical
model for predicting damage levels of buildings due to
a super typhoon and its storm surge. This study focuses
on Super Typhoon Haiyan and its storm surge event in
November 2013 in the Philippines. The study areas in-
clude Tacloban, Palo, Basey, Dulag, Marabut, Tanauan,
and Tolosa.

Accordingly, understanding the factors that have a sig-
nificant effect on collapsed buildings has many advan-
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tages. For instance, the proposed model is expected to
assess the risk of building in each zone. There will then
be ways to prepare buildings during super typhoons and
storm surges. Moreover, the model can indicate whether
the major damage to buildings occurred from wind or a
storm surge. This work is expected to be used to de-
velop urban planning for preventing damage in buildings
located in typhoon and storm surgeprone areas.

2. Background

2.1. Wind vs. Storm Surge Damage
Many researchers have studied the differences between

wind and water damage. Baradaranshoraka et al. [9]
applied a statistical analysis to estimate the loss model
from a hurricane in Florida, US, together with engineer-
ing judgment and hazard information (e.g., intensity and
timing). The interaction of wind, storm surge, flood, and
waves with low-rise structures was studied by Amoroso
and Gurley [10]. They conducted a field study and found
that wind-only damage is generally characterized as top-
down while storm surge, flood, and wave damages are
characterized as bottom-up [10]. Li et al. [11] used the
non-stationary Poisson process to develop a probabilistic
framework for hurricane damage assessment. They found
that changes in wind speed and occurrence rate have sig-
nificant impacts on hurricane damage [11]. They also
found that hurricane wind speeds did not affect the ex-
pected hurricane damage [11].

2.2. Building Damage Studies Using Statistical
Analysis

Ham et al. [12] developed a typhoon fragility measure
for industrial buildings in Korea. They used the Monte
Carlo simulation and compared the damage prediction
with the post-disaster survey. Pita et al. [13] developed
a novel approach to estimate the interior building damage
caused by hurricanes using the study area of Florida based
on a simulation of the co-occurrence of wind, rain, and
damage. Statistical analysis was applied to the typhoon
landing and failure mechanism of coastal low-rise build-
ings in China [14]. Their findings showed that most dam-
aged houses were restricted to the exterior of the build-
ing and the roof was more likely to be damaged than the
wall [14]. Another statistical analysis was conducted by
Padgett et al. [15]. They identified significant parame-
ters including surge elevation, number of spans, and rela-
tive surge [15]. By using the stepwise process and Monte
Carlo simulation, Pinelli et al. [16] developed a proba-
bilistic model to estimate the expected annual damage in-
duced by hurricane winds in residential structures. They
found that a sudden roof collapse results in immediate
damage to the walls [16].

This study also reviewed other related research.
Nishijima et al. [17] studied the preliminary impact as-
sessment of typhoons using AGCM simulation and a
probabilistic typhoon model and predicted the expected

Fig. 1. Damage levels.

decreasing number of damaged residential buildings in
Japan. A review of Duy et al. [18] found that the technical
solutions recommended for existing and new buildings in
cyclonic areas in Vietnam include planning, architectural,
and structural solutions such as avoiding building long,
thin houses.

Moreover, statistical analyses on building damage
from natural disasters have been studied by many re-
searchers [19, 20]. Ordinal logistic regression was used
to assess the building damage from the 2011 tsunami
disaster in Japan [21]. Multinomial logistic regression
was used to analyze the building damage from the 2011
tsunami in Japan [22, 23] and the 2004 Indian Ocean
tsunami in Sri Lanka [24]. In addition, linear and
non-linear logistic regression approaches were used to
estimate the fatality ratios from the 2011 tsunami in
Japan [25, 26].

3. Research Design and Methodology

3.1. Dependent Variable
In this study, the dependent variable is the damage lev-

els of buildings, which can be categorized into four lev-
els that are defined by the Japan International Coopera-
tion Agency (JICA): “DM1” Not Affected, “DM2” Mod-
erately Affected (roof is damaged), “DM3” Highly Af-
fected (roof is gone/“no roof”), and “DM4” Totally Af-
fected. The damage levels are illustrated in Fig. 1.

3.2. Independent Variable
The potential independent variables assumed to be used

in this study were chosen based on previous studies: wind
speed and inundation depth of storm surge [15, 16]. When
the super typhoon occurs, a storm surge will be induced.
The depth of the storm surge inundation was obtained us-
ing two models: DHI-MIKE21 and Delft3D, which are
hydraulic models. These models have been evaluated as
high quality and technically sound [27]. Therefore, these
two models were chosen to compute the depth of the
storm surge inundation.

In addition, due to the diversity in the affected areas,
a location characteristic was expected to be a criterion
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for categorizing. As a result, it was planned that the data
would be grouped based on location characteristics before
data analysis.

3.3. Assumption
Since people in the same location quite often have a

similar lifestyle, residences are built in the same way (e.g.,
number of floors). Thus, the assumption is that buildings
in the same general location have the same characteristics.

3.4. Research Design
3.4.1. Descriptive Statistics

Each independent variable was analyzed using
Minitab 17 in order to observe the descriptive profile.

3.4.2. Correlated Predictor Testing
It was confirmed that all independent variables were in-

dependent; in other words, they are not correlated accord-
ing to Pearson Momentum Correlation Analysis in IBM
SPSS Statistics 22. It is necessary to check this assump-
tion before performing regression analysis because of the
possibility of multi-collinearity, which occurs when there
is a high level of correlation between independent vari-
ables. It affects the coefficient estimations of the regres-
sion model.

3.4.3. Statistical Methods
Linear regression analysis is simpler than other regres-

sion techniques. However, it has many important assump-
tions: The variables should have normal distributions and
the variance of errors should be constant. Moreover,
the mean of errors should be equal to zero and be inde-
pendent [26]. The fundamental descriptive data analysis
found that this assumption was violated as the variables
do not have a normal distribution. Therefore, linear re-
gression analysis was not applied.

In fact, in addition to the normal distribution assump-
tion being violated, the dependent variable is categorical.
Thus, logistic regression is considered suitable. There are
three types of logistic regression: (1) binary logistic re-
gression, (2) ordinal logistic regression, (3) multinomial
logistic regression.

From the above, the data were analyzed using IBM
SPSS Statistics 22. Multinomial logistic regression is
suitable for analyzing the data in this study because the
dependent variable can be categorized which has more
than two categories. Moreover, ordinal logistic regression
is expected to be suitable since the dependent variable is
likely to have a natural order.

3.4.4. Statistical Model Development
The data were analyzed to develop a statistical model

using the dependent variable: damage levels of build-
ings (DM) and independent variables: wind speed and
storm surge inundation depth. However, the nature of the
building damage from the storm differs from that of the

storm surge. Therefore, the separately developed statisti-
cal models are expected to be suitable.

As a result, in each location, three models were de-
veloped: (1) damage models using the “entire” dataset;
(2) damage models using the datasets “without” storm
surge inundation (i.e., the data whose storm surge =
0.000; these were buildings damaged by storm winds
alone); and (3) damage models using the datasets “with”
storm surge inundation (i.e., the data whose storm surge
�= 0.000; these were the buildings damaged by both storm
winds and the storm surge).

3.4.5. Accuracy Testing
The data were separated into training (80%) and testing

(20%) datasets. The models were checked for their ac-
curacy by fitting them with another dataset that was col-
lected and kept separately for checking the accuracy of
each model.

3.5. Data Collection
The field survey was conducted in 2013–2014 to col-

lect detailed data immediately after the disaster. How-
ever, the data collected via field survey were not ade-
quate. Therefore, in this study decided to combine satel-
lite data and other sources [27]. The parameters were col-
lected and computed: (1) maximum wind speed, derived
from the Holland parametric hurricane model based on
the Japan Meteorological Agency (JMA) typhoon track
data; and (2) storm surge inundation depth, Delft3D mod-
els run with 25 m resolution over high-resolution topo-
graphic data and MIKE21 models run with 100 m resolu-
tion over high-resolution topographic data. The setup of
the parametric hurricane and hydrodynamic/wave mod-
els was the same as described in Bricker et al. [30] and
Watanabe et al. [31].

3.6. Data Analysis and Results
During data preprocessing from all collected data, the

data using the MIKE21 model to generate the depth of
storm surge inundation was selected to develop statistical
models because the data using the MIKE21 model was
more complete. There were originally 86,890 pieces of
data; once the missing data were cleaned, 66,651 piece
were left. The remaining data were then separated into
two sets with an equal proportion across all levels. The
first dataset (20%) was used for checking the accuracy of
the model, while the second dataset (80%) was used for
developing the models. The second dataset was then di-
vided into three locations due to the fact that seven lo-
cations are not on the same island, which can lead to
differences in topography. As shown in Fig. 2, Basey
and Marabut are located on Samar Island while Tacloban,
Palo, Tanauan, Tolosa, and Dulag are located on Leyte Is-
land. Thus, Basey and Marabut were named “Location 1,”
Tacloban was named “Location 2” because Tacloban is an
urban city while other locations are municipalities. Since
Palo, Tanauan, Tolosa, and Dulag are located in remote
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Note. Location 1: Basey and Marabut; Location 2: Tacloban; Location 3: Palo, Tanauan, Tolosa, and Dulag.

Fig. 2. Study area.

areas, they were called “Location 3.” In addition, the dif-
ference in density of each location was used to differen-
tiate these locations into three groups as well. The den-
sity of each location was approximately equal. Location 1
ranged from 93.09 to 123.9 people per km2 with an aver-
age of 108.5 people per km2. Location 2 has 2,284 people
per km2. Location 3 ranges from 605.3 to 928.2 people
per km2 and the average is 804.4 people per km2. Finally,
Location 1 (Basey and Marabut) is 733 km2 (596 km2

for Basey and 137 km2 for Marabut) [32]. Location 2
(Tacloban) is 106 km2 [33]. Location 3 is 248.8 km2

(81 km2 for Palo, 67.1 km2 for Tanauan, 22.6 km2 for
Tolosa, and 78.1 km2 for Dulag) [33].

3.6.1. Descriptive Statistics
After grouping the data into the three locations, the data

were preliminarily analyzed. Table 1 shows the descrip-
tive statistics of the wind speed and storm surge inunda-
tion depth of Location 1, Location 2, and Location 3.

The minimum depth of storm surge inundation in ev-
ery location is zero. This refers to the fact that not all
buildings were inundated. The buildings with zero storm
surge inundation depth suffered only from the power of
the wind (storm). It is interesting to separate the dataset
at each location further into two subsets: (1) those build-
ings with storm surge inundation, and (2) those without
storm surge inundation.

3.6.2. Correlation Analysis
The data were tested for correlation using the Pear-

son Product-Moment Correlation coefficient to measure
the strength of the relationship between the two indepen-
dent variables [33], wind speed and the depth of the storm
surge inundation.

The relationship between the two independent variables
of Location 1, Location 2, and Location 3 for the damage
model are 0.559, 0.148, and −0.088, respectively. Ac-
cording to the rule of thumb for interpreting the size of a

Table 1. Descriptive statistics of wind speed and storm
surge inundation depth.

Location- N Min Max Mean
Variable (SD)
Location 1 (Basey and Marabut)
Wind speed 1,051 76.913 83.435 77.935
[m/s] (0.973)
Storm surge 1,051 0.000 7.109 1.0249
inundation (1.830)
depth [m]
Location 2 (Tacloban)
Wind speed 46,422 72.544 83.503 82.409
[m/s] (1.563)
Storm surge 46,422 0.000 5.731 0.798
inundation (1.011)
depth [m]
Location 3 (Tanauan, Tolosa, and Dulag)
Wind speed 19,178 79.899 83.487 82.040
[m/s] (0.994)
Storm surge 19,178 0.000 9.196 0.499
inundation (0.661)
depth [m]

correlation coefficient, 0.7 to 0.9 is a high or strong cor-
relation [34]. The results showed that there are no strong
correlations between variables.

3.6.3. Damage Models Using the “Entire” Dataset
First, the data from each location were analyzed us-

ing ordinal regression, but the test of parallel lines (i.e.,
testing whether the coefficient estimates for each vari-
able across categories are the same) was significant at
p < 0.01.

Therefore, the data of each location were analyzed us-
ing multinomial logistic regression. The results show that
each location has a significant fit for the damage models
(p < 0.01).
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Table 2 presents the results of multinomial logistic re-
gressions for the three different locations (see Fig. 2). For
each location, the model for each damage level i follows
Eq. (1), where DMi is damage level i, Bspeed,i is a coeffi-
cient of wind speed, and Bdepth,i is a coefficient of storm
surge inundation depth.

ln
[

Pr (DMi)
Pr (DMBase)

]
= Bspeed,i ×Speed

+Bdepth,i ×Depth+ c . . (1)

• Location 1. The results showed that there were
nine pieces of DM1 data (1.1% of all data),
540 pieces of DM2 data (64.3%, the largest group),
0 pieces of DM3 data, and 291 pieces of DM4 data
(34.6%). Pseudo R2 was computed. Three methods
were used to estimate pseudo R2 [35–37]. The re-
sults are as follows: R2

Cox and Snell is 0.096; R2
Nagelkerke

is 0.127; and R2
McFadden is 0.072. On average, this

model has a 67.5% prediction accuracy.

• Location 2. There were 6,636 pieces of DM1
data (17.9%), 17,991 pieces of DM2 data (48.4%),
113 pieces of DM3 data (0.3%), and 12,398 pieces of
DM4 data (33.4%). R2

Cox and Snell is 0.072; R2
Nagelkerke

is 0.082; and R2
McFadden is 0.036. On average, this

model has a 54.1% correct prediction rate.

• Location 3. There were 164 pieces of DM1
data (1.1%), 6,304 pieces of DM2 data (41.1%),
241 pieces of DM3 data (1.6%), and 8,634 pieces of
DM4 data (56.3%). R2

Cox and Snell is 0.035; R2
Nagelkerke

is 0.044; and R2
McFadden is 0.022. On average, this

model has a 60.4% correct prediction rate.

3.6.4. Damage Models Using the Datasets “Without”
Storm Surge Inundation

Table 3 presents the results of multinomial logistic re-
gression using only the data without storm surge inunda-
tion at each location.

• Location 1. There were two pieces of DM1 data
(0.3%), 458 pieces of DM2 data (69.1%), no pieces
of DM3 data, and 203 pieces of DM4 data (30.6%).
R2

Cox and Snell is 0.158; R2
Nagelkerke is 0.220; and

R2
McFadden is 0.136. On average, this model has a

76.3 correct prediction rate.

• Location 2. There were 3,048 pieces of DM1
data (18.7%), 8,746 pieces of DM2 data (53.6%),
53 pieces of DM3 data (0.3%), and 4,474 pieces of
DM4 data (27.4%). The model did not have a sig-
nificant fit. As a result, all values of pseudo R2 are
0.000.

• Location 3. There were 131 pieces of DM1 data
(1.9%), 2,798 pieces of DM2 data (40.2%), 74 pieces
of DM3 data (1.1%), and 3,961 pieces of DM4 data

Table 2. Coefficients of independent variables in damage
model using entire data set.

DM Parameter B
Location 1 Location 2 Location 3

2 Intercept 159.849∗∗∗ −0.334 82.055∗∗∗
Wind speed
[m/s]

−1.990∗∗∗ 0.017∗∗ −0.952∗∗∗

Storm surge
inundation
depth [m]

−0.057 −0.112∗∗∗ 1.302∗∗∗

3 Intercept n/a −8.479∗ 81.133∗∗∗
Wind speed
[m/s]

n/a 0.055 −0.985∗∗∗

Storm surge
inundation
depth [m]

n/a −0.197∗ 1.900∗∗∗

4 Intercept 66.756∗∗∗ 2.821∗∗∗ 105.190∗∗∗
Wind speed
[m/s]

−0.802∗∗∗ −0.033∗∗∗ −1.231∗∗∗

Storm surge
inundation
depth [m]

−0.035 0.471∗∗∗ 1.444∗∗∗

*Significant at level p < 0.1 (2-tailed).
**Significant at level p < 0.05 (2-tailed).
***Significant at level p < 0.01 (2-tailed).

Table 3. Coefficients of independent variables in damage
model using datasets “without” storm surge inundation.

DM Parameter B
Location 1 Location 2 Location 3

2 Intercept 2,346.171∗∗∗ 2.617∗∗∗ 316.885∗∗∗
Wind
speed
[m/s]

−30.129∗∗∗ −0.019∗ −3.778∗∗∗

3 Intercept n/a 2.207 324.083∗∗∗
Wind
speed
[m/s]

n/a −0.077 −3.909∗∗∗

4 Intercept 196.474∗∗∗ 0.728 362.910∗∗∗
Wind
speed
[m/s]

−2.460∗∗∗ −0.004 −4.332∗∗∗

*Significant at level p < 0.1 (2-tailed).
**Significant at level p < 0.05 (2-tailed).
***Significant at level p < 0.01 (2-tailed).

(56.9%). R2
Cox and Snell is 0.088; R2

Nagelkerke is 0.110;
and R2

McFadden is 0.057. On average, this model has
a 61.2% correct prediction rate.

3.6.5. Damage Models Using the Datasets “with”
Storm Surge Inundation

Table 4 presents the results of multinomial logistic re-
gression using only the data with storm surge inundation
at each location.

• Location 1. There were seven pieces of DM1 data
(4.0%), 82 pieces of DM2 data (46.3%), no DM3,
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Table 4. Coefficients of independent variables in damage
models “with” storm surge inundation.

DM Parameter B
Location 1 Location 2 Location 3

2 Intercept 102.978∗∗∗ −9.596∗∗∗ −2.490
Wind speed
[m/s]

−1.293∗∗∗ 0.131∗∗∗ 0.081

Storm surge
inundation
depth [m]

0.466 −0.175∗∗∗ 0.785∗

3 Intercept n/a −66.232∗∗∗ −8.536
Wind speed
[m/s]

n/a 0.758∗∗∗ 0.108

Storm surge
inundation
depth [m]

n/a −0.454∗∗ 1.588∗∗∗

4 Intercept 54.595∗∗∗ −1.074 5.939
Wind speed
[m/s]

−0.686∗∗∗ 0.006 −0.023

Storm surge
inundation
depth [m]

0.692 0.786∗∗∗ 1.219∗∗∗

*Significant at level p < 0.1 (2-tailed).
**Significant at level p < 0.05 (2-tailed).
***Significant at level p < 0.01 (2-tailed).

and 88 pieces of DM4 data (49.7%). R2
Cox and Snell is

0.140; R2
Nagelkerke is 0.173; and R2

McFadden is 0.091.
On average, this model has a 53.7 correct prediction
rate.

• Location 2. There were 3,588 pieces of DM1
data (17.2%), 9,245 pieces of DM2 data (44.4%),
60 pieces of DM3 data (0.3%), and 7,924 pieces of
DM4 data (38.1%). R2

Cox and Snell is 0.138; R2
Nagelkerke

is 0.158; and R2
McFadden is 0.071. On average, this

model has a 56.2% correct prediction rate.

• Location 3. There were 33 pieces of DM1
data (0.4%), 3,506 pieces of DM2 data (41.8%),
167 pieces of DM3 data (2.0%), and 4,673 pieces of
DM4 data (55.8%). R2

Cox and Snell is 0.023; R2
Nagelkerke

is 0.029; and R2
McFadden is 0.015. On average, this

model has a 54.6% correct prediction rate.

4. Discussion and Conclusions

The result of correlation testing showed that there are
no strong correlations between wind speed and the depth
of the storm surge inundation variable. This means
that there was no multicollinearity between the variables.
Therefore, the regression model can be developed using
only one or both variables. In this study, the regression
models of each location were developed using multino-
mial logistic regression. Although the damage levels are
likely to have a natural order, the results of parallel line
testing show that they are not suitable for analysis using

ordinal regression. Since the damage levels of buildings
are determined by humans, they might not have an actual
natural order.

4.1. Models of Location 1
The results show that the storm surge inundation depth

did not have a significant effect at every damage level.
Moreover, based on the damage models using the datasets
“without” storm surge inundation show that wind speed
significantly affected every damage level. Thus, only the
wind speed variable affected the probability of the occur-
rence of different damage levels. Based on expert con-
sultation, this seems to be because Basey and Marabut are
located mainly in a mountainous area. Thus, the buildings
may not have been damaged by the storm surge since the
storm surge might not reach the buildings.

4.2. Models of Location 2
According to the damage models using the “entire”

dataset, both wind speed and the storm surge inundation
depth had a partial significant effect on damage levels.
However, the wind speed variable at DM3 did not have a
significant effect. The damage models using the datasets
“with” storm surge inundation show that all variables had
a partial significant effect on the damage levels. However,
the wind speed variable did not have a significant effect
at DM4. Since Tacloban is located in an urban area, there
might be other potential factors that affect the probabil-
ity of the occurrence of different damage levels. Based
on expert consultation, in this case, it was hypothesized
that debris floating along with the storm surge is another
significant factor that causes damage to buildings.

4.3. Models of Location 3
According to the damage models using the “entire”

dataset and the damage models using the datasets “with-
out” storm surge inundation, the results show that all vari-
ables significantly affected the damage levels at every
damage level. This means that both wind speed and the
storm surge inundation depth variable affected the proba-
bility of the occurrence of different damage levels. Based
on expert consultation, Tolosa, Tanauan, Palo, and Du-
lag are located in the plains area. Thus, buildings may
be damaged from a storm surge since a storm surge can
easily reach into buildings. However, the damage mod-
els using the datasets “with” storm surge inundation show
that the wind speed variable did not have a significant ef-
fect at every damage level while the depth of the storm
surge inundation had a significant effect at every damage
level. This may be because the buildings that the storm
surge can reach incur more major damage from the storm
surge than storm winds.

4.4. Conclusion
The Philippines was the country most strongly affected

by Super Typhoon Haiyan, with extreme losses of lives
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Table 5. Summary of findings.

No. Location Findings
characteristics

1 Mountainous area Only typhoon wind speed significantly affected all damage levels. It is pos-
sible to use wind speed as the main parameter to predict damage levels.

2 Urban plain area Wind speed significantly affected all damage levels. When looking at both
wind speed and storm surge, they partially affected the damage levels. Thus,
it is possible to use wind speed as the main parameter to predict damage
levels. It seems there are more parameters required for further investigating.

3 Coastal plain area Wind speed significantly affected all damage levels. In addition, using both
wind speed and storm surge inundation depth also significantly affected dam-
age levels. Thus, it is possible to use only wind speed or use both wind and
storm surge inundation depth to predict damage levels.

and damage to buildings. When buildings are analyzed, it
is interesting to note that all of the buildings did not col-
lapse for the same reason after the impact of the typhoon
and the storm surge. The purpose of this paper is to de-
velop statistical models for building damage due to Super
Typhoon Haiyan and its storm surge. In this work, follow-
ing the assumption of the natural order, statistical analysis
using ordinal regression was selected to identify the sig-
nificant factors influencing the damage to buildings and
develop statistical models. However, the results of paral-
lel line testing showed that this situation is not suitable for
using ordinal regression. Thus, statistical analysis using
multinomial regression was selected instead. The models
were conducted for three locations (seven cities) on the
same island. This can lead to differences in topography,
as shown in Table 5.

Results from Location 1 showed that only the storm
wind speed variable was significant at every damage level.
The results from Location 2 showed that the developed
models do not fit because there might be additional fac-
tors because Tacloban is an urban city with unique char-
acteristics. The results from Location 3 showed that both
wind speed and the depth of storm surge inundation vari-
ables were significant at every damage level. These results
showed that the wind speed variable was a significant fac-
tor in every location. According to other research, the
wind speed parameter was always a significant factor in
the models. However, Location 3 had another significant
factor: the storm surge inundation depth. Therefore, risk
reduction studies in the area of Location 3 should consider
both wind speed and the depth of storm surge inundation.
The different topography can lead to the different signifi-
cant factors for predicting the damage of buildings.

This study is expected to help authorities in the area
understand disaster risk and invest in disaster risk reduc-
tion for resilience according to the Sendai Framework for
Disaster Risk Reduction 2015–2030 [38]. The results of
this work are also expected to be used to develop urban
planning for preventing damage to buildings located in a
typhoon- and storm surge-prone area.

Although the models in this work were expected to be
general models for risk analysis in other areas, the mod-
els were developed using the data in specific areas; there-

fore, the models might not be generalized for use in other
areas. Still, the developed models are hardly able to pre-
dict the probability of DM1 and DM3 occurrences since
the data that were used to develop models were inade-
quate and the categorization of damage levels might not
be suitable. Moreover, the factors influencing the damage
to buildings for developing the models were limited. Nev-
ertheless, developing an urban city’s model for predicting
the probability of damage level occurrence is necessary
because there are many people living there.

Further studies might consider more potential param-
eters influencing the damage to buildings for developing
statistical models such as debris floating with storm surge,
construction of buildings, and the number of floors and
age of buildings. In addition, big data from locations can
be used to developing other models with a higher predic-
tion accuracy.
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Aquitaine (CRNA) for the chair position HPC-Waves.

References:
[1] S. Brown, “The Philippines Is the Most Storm-Exposed Country on

Earth,” TIME, November 11, 2013, http://world.time.com/2013/11/
11/the-philippines-is-the-most-storm-exposed-country-on-earth
[accessed September 16, 2017]

[2] H. Takagi, M. de Leon, M. Esteban, T. Mikami, and R. Nakamura,
“Storm surge due to 2013 Typhoon Yolanda (Haiyan) in Leyte Gulf,
the Philippines,” M. Esteban, H. Takagi, and T. Shibayama (Eds.),
“Handbook of Coastal Disaster Mitigation for Engineers and Plan-
ners,” pp. 133-144, Elsevier, 2015.

[3] N. Leelawat, A. Suppasri, S. Kure, C. J. Yi, C. M. R. Mateo, and
F. Imamura, “Disaster warning system in the Philippines through

828 Journal of Disaster Research Vol.15 No.7, 2020



Statistical Analysis of Building Damage from the 2013 Super
Typhoon Haiyan and its Storm Surge in the Philippines

enterprise engineering perspective: A study on the 2013 Super Ty-
phoon Haiyan,” J. Disaster Res., Vol.10, No.6, pp. 1041-1050, doi:
10.20965/jdr.2015.p1041, 2015.

[4] H. S. Lee and K. O. Kim, “Storm surge and storm waves mod-
elling due to Typhoon Haiyan in November 2013 with improved dy-
namic meteorological conditions,” Procedia Engineering, Vol.116,
pp. 699-706, 2015.

[5] A. M. F. Lagmay, R. P. Agaton, M. A. C. Bahala, J. B. L. T. Briones,
K. M. C. Cabacaba, C. V. C. Caro, L. L. Dasallas, L. A. L. Gonzalo,
C. N. Ladiero, J. P. Lapidez, M. T F. Mungcal, J. V. R. Puno, M. M.
A. C. Ramos, J. Santiago, J. K. Suarez, and J. P. Tablazon, “Dev-
astating storm surges of Typhoon Haiyan,” Int. J. of Disaster Risk
Reduction, Vol.11, pp. 1-12, 2015.

[6] A. Suppasri, C. J. Yi, N. Leelawat, M. Watanabe, J. D. Bricker, and
F. Imamura, “Field Survey and Analysis of Damaged School Build-
ings by the 2013 Typhoon Haiyan and Storm Surge,” J. of Japan
Society of Civil Engineers, Ser. B2 (Coastal Engineering), Vol.71,
No.2, pp. I 1669-I 1674, 2015.

[7] BBC News, “Mapping Typhoon Haiyan,” http://www.bbc.com/
news/world-asia-24917722 [accessed September 16, 2017]

[8] Y. Tajima and T. Shimozono, “Super Typhoon Haiyan in the
Philippines,” Y. Hayashi, Y. Suzuki, S. Sato, and K. Tsukahara
(Eds.) “Disaster Resilient Cities: Concepts and Practical Exam-
ples,” pp. 21-29, Elsevier, 2016.

[9] M. Baradaranshoraka, J. P. Pinelli, K. Gurley, X. Peng, and M.
Zhao, “Hurricane wind versus storm surge damage in the context
of a risk prediction model,” J. of Structural Engineering, Vol.143,
No.9, 2017.

[10] S. D. Amoroso and K. R. Gurley, “Response of Structures to wind,
storm surge, flood, and waves,” D. B. Peraza, W. L. Coulbourne, and
M. Griffith (Eds.), “Engineering Investigations of Hurricane Dam-
age: Wind versus Water,” pp. 62-79, American Society of Civil En-
gineers, 2014.

[11] Q. Li, C. Wang, and H. Zhang, “A probabilistic framework for hur-
ricane damage assessment considering non-stationarity and corre-
lation in hurricane actions,” Structural Safety, Vol.59, pp. 108-117,
2016.

[12] H. Ham, S. Lee, and H. Kim, “Development of typhoon fragility for
industrial buildings,” Proc. of the 7th Asia-Pacific Conf. on Wind
Engineering, 2009.

[13] G. Pita, J. P. Pinelli, S. Cocke, K. Gurley, J. Mitrani-Reiser, J.
Weekes, and S. Hamid, “Assessment of hurricane-induced inter-
nal damage to low-rise buildings in the Florida Public Hurricane
Loss Model,” J. of Wind Engineering and Industrial Aerodynamics,
Vols.104-106, pp. 76-87, 2012.

[14] Y. M. Dai, X. G. Yan, X. J. Wang, H. X. Sun, and Y. G. Li, “Statis-
tics and Analysis of typhoons landing and failure mechanism of
coastal low-rise buildings in China,” Applied Mechanics and Ma-
terials, Vols.226-228, pp. 1072-1075, 2012.

[15] J. E. Padgett, A. Spiller, and C. Arnold, “Statistical analysis of
coastal bridge vulnerability based on empirical evidence from Hur-
ricane Katrina,” Structure and Infrastructure Engineering, Vol.8,
No.6, pp. 595-605, 2012.

[16] J. P. Pinelli, E. Simiu, K. Gurley, C. Subramanian, L. Zhang, A.
Cope, J. J. Filliben, and S. Hamid, “Hurricane damage predic-
tion model for residential structures,” J. of Structural Engineering,
Vol.130, No.11, pp. 1685-1691, 2004.

[17] K. Nishijima, T. Maruyama, and M. Graf, “A preliminary impact
assessment of typhoon wind risk of residential buildings in Japan
under future climate change,” Hydrological Research Letters, Vol.6,
pp. 23-28, 2012.

[18] T. C. Duy, C. N. Xuan, M. N. Dai, H. N. Huu, and C. B. Tat, “Ty-
phoons and technical solutions recommended for existing and new
houses in the cyclonic regions in Vietnam,” Electronic J. of Struc-
tural Engineering, Vol.8, Special Issue 2, pp. 8-18, 2008.

[19] A. Suppasri, I. Charvet, J. Macabuag, T. Rossetto, N. Leelawat,
P. Latcharote, and F. Imamura, “Building damage assessment and
implications for future tsunami fragility estimations,” M. Esteban,
H. Takagi, and T. Shibayama (Eds.), “Handbook of Coastal Disas-
ter Mitigation for Engineers and Planners,” pp. 147-178, Elsevier,
2015.

[20] A. Suppasri, P. Latcharote, J. D. Bricker, N. Leelawat, A. Hayashi,
K. Tamashita, F. Makinoshima, V. Roeber, and F. Imamura, “Im-
provement of tsunami countermeasures based on lessons from the
2011 Great East Japan earthquake and tsunami – Situation after five
years,” Coastal Engineering J., Vol.58, No.4, 2016.

[21] N. Leelawat, A. Suppasri, I. Charvet, and F. Imamura, “Build-
ing damage from the 2011 Great East Japan tsunami: quantitative
assessment of influential factors,” Natural Hazards, Vol.73, No.2,
pp. 449-471, 2014.

[22] N. Leelawat, A. Suppasri, I. Charvet, T. Kimura, D. Sugawara, and
F. Imamura, “A study on influential factors on building damage in
Kesennuma, Japan from the 2011 Great East Japan tsunami,” Engi-
neering J., Vol.19, No.3, pp. 105-116, 2015.

[23] W. Treeranurat, K. Saengtubtim, N. Wisittiwong, J. Tang, N.
Leelawat, A. Suppasri, K. Pakaksung, and F. Imamura, “Building
damage analysis from the 2011 Great East Japan tsunami,” Proc. of
the 2019 Int. Conf. on Engineering and Natural Science, pp. 33-39,
2019.

[24] N. Leelawat, A. Suppasri, O. Murao, and F. Imamura, “A study on
the influential factors on building damage in Sri Lanka during the
2004 Indian Ocean tsunami,” J. of Earthquake and Tsunami, Vol.10,
No.2, Article No.1640001, 2016.

[25] P. Latcharote, N. Leelawat, A. Suppasri, P. Thamarux, and F. Ima-
mura, “Estimation of fatality ratios and investigation of influential
factors in the 2011 Great East Japan tsunami,” Int. J. of Disaster
Risk Reduction, Vol.29, pp. 37-54, 2018.

[26] P. Latcharote, N. Leelawat, A. Suppasri, and F. Imamura, “Devel-
oping estimating equations of fatality ratio based on surveyed data
of the 2011 Great East Japan tsunami,” IOP Conf. Series: Earth and
Environmental Science, Volume 56, IOP Publishing, 2017.

[27] National Weather Service, http://www.nws.noaa.gov/oh/rfcdev/
docs/Final Report EvaluationHydraulicModels.pdf [accessed Oc-
tober 16, 2017]

[28] G. A. F. Seber, “Linear Regression Analysis,” Wiley, 1977.
[29] E. Mas, J. D. Bricker, S. Kure, B. Adriano, C. J. Yi, A. Suppasri,

and S. Koshimura, “Field survey report and satellite image interpre-
tation of the 2013 Super Typhoon Haiyan in the Philippines,” Natu-
ral Hazards and Earth System Sciences, Vol.15, No.4, pp. 805-816,
2015.

[30] J. D. Bricker, H. Takagi, E. Mas, S. Kure, B. Adriano, C. J. Yi,
and V. Roeber, “Spatial variation of damage due to storm surge and
waves during Typhoon Haiyan in the Philippines,” J. of Japan Soci-
ety of Civil Engineers, Ser. B2 (Coastal Engineering), Vol.70, No.2,
pp. I 231-I 235, 2014.

[31] M. Watanabe, J. D. Bricker, K. Goto, and F. Imamura, “Factors
responsible for the limited inland extent of sand deposits on Leyte
Island during 2013 Typhoon Haiyan,” J. of Geophysical Research:
Oceans, Vol.122, No.4, pp. 2795-2812, 2017.

[32] “City Population,” https://www.citypopulation.de/php/philippines-
visayas-admin.php [accessed March 16, 2018]

[33] “Pearson Product-Moment Correlation,” https://statistics.laerd.
com/statistical-guides/pearson-correlation-coefficient-statistical-
guide.php [accessed March 16, 2018]

[34] D. E. Hinkle, W. Wiersma, and S. G. Jurs, “Applied Statistics for
the Behavioral Sciences,” 5th edition, Houghton Mifflin, 2003.

[35] D. R. Cox and E. J. Snell, “The Analysis of Binary Data,” Chapman
and Hall, 1989.

[36] N. J. Nagelkerke, “A note on a general definition of the coefficient
of determination,” Biometrika, Vol.78, No.3, pp. 691-692, 1991.

[37] D. McFadden, “Conditional logit analysis of qualitative choice be-
havior,” Paul Zarembka (Ed.), “Frontiers in Econometric,” pp. 105-
142, Wiley, 1974.

[38] “Sendai Framework for Disaster Risk Reduction 2015–2030,”
https://www.unisdr.org/files/43291 sendaiframeworkfordrren.pdf
[accessed April 1, 2018]

Name:
Tanaporn Chaivutitorn

Affiliation:
School of Management, National Taiwan Uni-
versity of Science and Technology

Address:
43 Sec. 4, Keelung Road, Taipei 106, Taiwan
Brief Career:
2018-2020 Research Assistant, Mahidol University

Journal of Disaster Research Vol.15 No.7, 2020 829



Chaivutitorn, T. et al.

Name:
Thawalrat Tanasakcharoen

Affiliation:
Department of Industrial Engineering, Faculty of
Engineering, Chulalongkorn University

Address:
48/370 Khokkrabue, Mueangsamutsakhon, Samutsakhon 74000, Thailand
Brief Career:
2019 Joined Tang Tong Tai Part., Ltd.

Name:
Natt Leelawat

Affiliation:
Assistant Professor, Department of Industrial
Engineering, Faculty of Engineering, Chula-
longkorn University
Head, Disaster and Risk Management Informa-
tion Systems Research Group, Chulalongkorn
University
Assistant Dean, Faculty of Engineering, Chula-
longkorn University
Director, Risk and Disaster Management Pro-
gram, Graduate School, Chulalongkorn Univer-
sity

Address:
254 Phayathai Road, Pathumwan, Bangkok 10330, Thailand
Brief Career:
2007-2009 System Analyst, Bank of Thailand
2016-2017 Assistant Professor, Tohoku University
2017-2018 Lecturer, Chulalongkorn University
2018- Assistant Professor, Chulalongkorn University
Selected Publications:
• N. Leelawat, A. Suppasri, P. Latcharote, Y. Abe, K. Sugiyasu, and F.
Imamura, “Tsunami evacuation experiment using a mobile application: A
design science approach,” Int. J. of Disaster Risk Reduction, Vol.29,
pp. 63-72, 2017.
• N. Leelawat, P. Latcharote, A. Suppasro, T. Sararit, M. Srivichai, J. Tang,
T. Chua, D. Kumnetrut, K. Saengtabtim, and F. Imamura, “Today in
Thailand: multidisciplinary perspectives on the current tsunami disaster
risk reduction,” Geological Society, London, Special Publications,
Vol.501, 2020.
• N. Leelawat, A. Suppasri, I. Charvet, and F. Imamura, “Building damage
from the 2011 Great East Japan tsunami: quantitative assessment of
influential factors,” Natural Hazards, Vol.73, No.2, pp. 449-471, 2014.
Academic Societies & Scientific Organizations:
• Asia Oceania Geosciences Society (AOGS)
• Association for Information Systems (AIS)
• Institute of Electrical and Electronics Engineers (IEEE), Senior Member

Name:
Jing Tang

Affiliation:
Lecturer, International School of Engineering,
Faculty of Engineering, Chulalongkorn Univer-
sity

Address:
254 Phayathai Road, Pathumwan, Bangkok 10330, Thailand
Brief Career:
2013-2017 Enterprise System Transformation Consultant, based in Japan
2017-2019 Lecturer, Sirindhorn International Institute of Technology,
Thammasat University
2019- Lecturer, Chulalongkorn University
Selected Publications:
• J. Tang, L. G. Pee, and J. Iijima, “Investigating the effect of business
process orientation on organizational innovation performance,”
Information & Management, Vol.50, No.8, pp. 650-660, 2013.
• N. Leelawat, P. Latcharote, A. Suppasro, T. Sararit, M. Srivichai, J. Tang,
T. Chua, D. Kumnetrut, K. Saengtabtim, and F. Imamura, “Today in
Thailand: multidisciplinary perspectives on the current tsunami disaster
risk reduction,” Geological Society, London, Special Publications,
Vol.501, 2020.
• M. Fachrizal and J. Tang, “Forecasting annual solar PV capacity
installation in Thailand residential sector: A user segmentation approach,”
Engineering J., Vol.23, No.6, pp. 99-115, 2019.

Name:
Carl Vincent C. Caro

Affiliation:
Executive Vice President, Viosimos Integrated
Planning Consultants Inc.

Address:
Block 5C Lot 2 Kingstown 1 Subdivision, Bagumbong Caloocan City
1421, The Philippines
Brief Career:
2013-2016 Department of Science and Technology, Nationwide
Operational Assessment of Hazards (NOAH)
2016-2020 Philippine Disaster Resilience Foundation
2020 Viosimos Integrated Planning Consultants Inc.
Selected Publications:
• “Devastating storm surges of Typhoon Haiyan,” Int. J. of Disaster Risk
Reduction, Vol.11, pp. 1-12. 2015.
• “Probabilistic storm surge inundation maps for Metro Manila based on
Philippine public storm warning signals,” Natural Hazards and Earth
System Science, Vol.15, pp. 557-570, 2015.
Academic Societies & Scientific Organizations:
• Philippine Geographic Society
• American Geophysical Union (AGU)
• Asia Oceania Geosciences Society (AOGS)

830 Journal of Disaster Research Vol.15 No.7, 2020



Statistical Analysis of Building Damage from the 2013 Super
Typhoon Haiyan and its Storm Surge in the Philippines

Name:
Alfredo Mahar Francisco A. Lagmay

Affiliation:
Executive Director, University of the Philippines
(UP) Resilience Institute (RI)
Director, UP Nationwide Operational Assess-
ment of Hazards (NOAH) Center
Professor, UP National Institute of Geological
Sciences

Address:
#6 Purok Aguinaldo, UP Campus, Diliman, Quezon City, Metropolitan
Manila 1101, The Philippines
Brief Career:
2013- Climate Science and Technology Adviser, Asian Network on
Climate Science and Technology (ANCST), International Scientific
Advisory Committee
Selected Publications:
• A. M. F. A Lagmay, C. Escape, A. A. Ybanez, J. J. Suarez, and G.
Cuaresma, “Anatomy of the Naga City landslide and comparison with
historical debris avalanches and analog models,” Frontiers in Earth
Science, Vol.8, doi: 10.3389/feart.2020.00312, 2020.
• R. C. T. Gacusan and A. M. F A. Lagmay, “Shallow seismic reflection
imaging of the Inabanga-Clarin portion of the North Bohol Fault, Central
Visayas, Philippines,” Geoscience Letters, Vol.6, No.1, Article No.9, 2019.
• M. Lagmay and B. A. Racoma, “Lessons from tropical storms Urduja
and Vinta disasters in the Philippines,” Disaster Prevention and
Management, Vol.28, No.2, pp. 154-170, 2019.
• A. M. F. A. Lagmay, “An Open Data Law for Climate Resilience and
Disaster Risk Reduction,” Albert Del Rosario Institute for Strategic and
International Studies, 2018.
Academic Societies & Scientific Organizations:
• National Academy for Science and Technology (NAST), Academician
• Philippine Academic Society for Climate and Disaster Resilience,
Co-Founder

Name:
Anawat Suppasri

Affiliation:
Associate Professor, International Research In-
stitute of Disaster Science (IRIDeS), Tohoku
University

Address:
468-1 Aoba, Aramaki-Aza, Aoba, Sendai, Miyagi 980-8572, Japan
Brief Career:
2010 Post-Doctoral Research Fellow, Disaster Control Research Center,
Tohoku University
2012 Associate Professor, IRIDeS, Tohoku University
Selected Publications:
• A. Suppasri, K. Pakoksung, I. Charvet, C. T. Chua, N. Takahashi, T.
Ornthammarath, P. Latcharote, N. Leelawat, and F. Imamura,
“Load-resistance analysis: An alternative approach to tsunami damage
assessment applied to the 2011 Great East Japan tsunami,” Natural
Hazards and Earth System Sciences, Vol.19, pp. 1807-1822, 2019.
• A. Suppasri, K. Fukui, K. Yamashita, N. Leelawat, H. Ohira, and F.
Imamura, “Developing fragility functions for aquaculture rafts and
eelgrass in the case of the 2011 Great East Japan tsunami,” Natural
Hazards and Earth System Sciences, Vol.18, pp. 145-155, 2018.
• A. Suppasri, N. Leelawat, P. Latcharote, V. Roeber, K. Yamashita, A.
Hayashi, H. Ohira, K. Fukui, A. Hisamatsu, D. Nguyen, and F. Imamura,
“The 2016 Fukushima Earthquake and Tsunami: Preliminary research and
new considerations for tsunami disaster risk reduction,” Int. J. of Disaster
Risk Reduction, Vol.21, pp. 323-330, 2017.
Academic Societies & Scientific Organizations:
• Japan Society of Civil Engineers (JSCE)
• Asia Oceania Geosciences Society (AOGS)
• European Geosciences Union (EGU)

Name:
Jeremy D. Bricker

Affiliation:
Associate Professor, Department of Hydraulic
Engineering, Delft University of Technology

Address:
Stevinweg 1, CN Delft 2628, The Netherlands
Brief Career:
2008 Senior Engineer, URS Corporation
2012 Visiting Associate Professor, Tokyo Institute of Technology
2013 Associate Professor, International Research Institute of Disaster
Science (IRIDeS), Tohoku University
2016 Associate Professor, Department of Hydraulic Engineering, Delft
University of Technology
Selected Publications:
• V. Roeber and J. D. Bricker, “Destructive tsunami-like wave generated
by surf beat over a coral reef during Typhoon Haiyan,” Nature
Communications, Vol.6, No.1, pp. 1-9, 2015.
• J. D. Bricker and A. Nakayama, “Contribution of trapped air, deck
superelevation, and nearby structures to bridge deck failure during a
tsunami,” J. of Hydraulic Engineering, Vol.140, No.5, Article
No.05014002, 2014.
Academic Societies & Scientific Organizations:
• Japan Society of Civil Engineers (JSCE)
• International Association of Hydraulic Research (IAHR)
• American Society of Civil Engineers (ASCE7) Tsunami Loads and
Effects Subcommittee

Journal of Disaster Research Vol.15 No.7, 2020 831



Chaivutitorn, T. et al.

Name:
Volker Roeber

Affiliation:
Assistant Professor and Chair HPC-Waves, Uni-
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