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Crustal deformation is essential information for mon-
itoring volcanic activity. In the summit area of the
Kusatsu-Shirane Volcano (KSV), a dense Global Nav-
igation Satellite System (GNSS) network has been op-
erating near the recent volcanic center, Yugama crater.
This network is sensitive to shallow depth activity,
such as phreatic eruptions at the summit area, but is
not applicable to deep magmatic activity, suggested to
have been occurring for thousands of years by recent
geological studies. Aiming to detect magmatic activ-
ity at a certain depth, we installed a new GNSS net-
work near KSV. The observation sites were selected
based on the crustal deformation pattern calculated
for several intrusive events of the deep-seated magma.
First, the GNSS sites for campaign observation were
installed at eight locations in 2017. Then, four con-
tinuous sites commenced operation after a phreatic
eruption at Mt. Motoshirane in January 2018. Here,
we show the results of the first and second observa-
tion campaigns, operating in October 2017 and Febru-
ary 2018. Coordinate values are computed by pre-
cise point positioning with ambiguity resolution (PPP-
AR) analysis and are used to calculate the displace-
ment and the baseline length change during this pe-
riod. The uncertainties of the calculated coordinate
values are sufficiently small (less than 4.5 mm) except
at some sites for which the data possibly include multi-
path errors due to trees and snow. Although any defor-
mation associated with the 2018 eruption of Mt. Moto-
shirane is not detected, subsequent observations would
contribute to monitoring long-term activity near KSV.
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1. Introduction

The Kusatsu-Shirane volcano (KSV) is one of the ac-
tive volcanoes in Japan and is known to have a well-
developed hydrothermal system which is closely related
to phreatic eruptions and seismic activity (e.g., [1-3]).
KSV consists of two major peaks: Mt. Shirane and
Mt. Motoshirane (Fig. 1). Mt. Shirane has three ma-
jor crater lakes (Yugama, Mizugama, and Karegama).
Mt. Motoshirane is composed of four main pyroclastic
cones: Ko-Motoshirane, Shin-Motoshirane, Kagami-ike,
and Kagami-ike-kita ([4] and references therein). They
are all volcanic vents, some of which have fumarolic
activity. Between Mt. Shirane and Mt. Motoshirane,
there exist several vents, including Ainomine pyroclastic
cone and Yumi-ike maar. Yumi-ike maar is thought to
have been formed simultaneously with pyroclastic cones
in the Mt. Motoshirane area [5]. Recent eruption ac-
tivity of KSV is represented by phreatic eruptions near
Yugama crater at Mt. Shirane. Since the oldest historic
eruption of 1882, nineteen phreatic eruptions have been
recorded [6]. After the last magmatic eruption at Kagami-
ike-kita cone nearly 1500 years ago, the volcanic activ-
ity in KSV shifted to the phreatic eruption activity near
Yugama crater at Mt. Shirane (e.g., [4]). In other words,
KSV is characterized by the more recent phreatic erup-
tions, which have exhibited continuous magmatic activ-
ity at Mt. Motoshirane since approximately 1500 years
ago (e.g., [4,7]). Recent geological studies have revealed
magmatic eruptions that caused large amounts of lava ef-
fusion during the past thousands of years in KSV [4, 8, 9].
In this background, it is necessary to prepare an observa-
tion network to detect the crustal deformation in a wide
range leading to a magmatic eruption in the future. For
this purpose, we installed a new GNSS network around
KSV.
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Fig. 1. Newly installed and pre-existing GNSS network around Kusatsu-Shirane Volcano. Black dashed line box in the left side
map indicates the region of the right side map. Base map: ALOS Global Digital Surface Model which is 30-m-mesh data, issued by

JAXA.

2. Background: Pre-Existing Observation Sites

Since around 2009, the Kusatsu-Shirane Volcano Ob-
servatory (KSVO) of the Tokyo Institute of Technol-
ogy has been studying crustal deformation related to
the volcanic activity of KSV, using several observation
instruments consisting of seismometers, tiltmeters, and
a Global Navigation Satellite System (GNSS) network.
Because the recent eruptive activity is characterized by
phreatic eruptions in and around Yugama crater [5], the
pre-existing observation network was constructed with
the aim of detecting shallow crustal deformation near
Yugama crater: KSR, KSW, KSE, and KSYG (added in
2011) (Fig. 1). Using this GNSS network, crustal defor-
mation associated with volcanic unrest has been observed
continuously. The collected data are sent to the data server
in KSVO and automatically computed as the daily coor-
dinate values by Spider software (Leica). Whereas this
high-density network is sensitive to shallow activity, de-
tection of deep crustal deformation caused by intrusions
of magma can be limited. To detect deeper crustal ac-
tivity, a wider-range observation network is necessary.
Furthermore, this concentrated network is vulnerable to
eruptions in the summit area. Actually, in the 2018 erup-
tion of Mt. Motoshirane, the observation network faced
a crisis of power failure as the commercial power sys-
tem was destroyed by volcanic explosions. To avoid
such a situation, it is meaningful to expand the observa-
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tion network to locations away from the volcanic center.
Besides KSVO, the Geospatial Information Authority of
Japan (GSI), Japan Meteorological Agency (JMA), and
National Research Institute for Earth Science and Disas-
ter Resilience (NIED) also have continuous GNSS obser-
vation sites near KSV (Fig. 1). Although data from these
other institutions, covering a wide range around KSV, can
be used, the observation sites are sparsely distributed. In
particular, there are few observation sites within 5-10 km
from Yugama crater (Fig. 1), which are considered to be
essential to detect the crustal deformation caused by the
magma activity of KSV. Therefore, we have to increase
the spatial density of the GNSS network.

3. Method

3.1. Selection of Observation Sites

To select the location of an observation site to be newly
installed, we calculated the uplift height and horizontal
displacement associated with a deep magmatic intrusion
(modeled as a spherical inflation source) in advance of
using the Mogi model [10]. Considering the topography
of the volcanic edifice, we used the elevation-corrected
Mogi model [11];
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where U, and U, are the vertical and horizontal displace-
ments, respectively, a is the radius of the inflation source,
D is the depth of inflation source below sea level, & is
the height above sea level, AP is the pressure change,
and p is the shear modulus. We assumed 1000 m,
1.01325x%108 Pa, and 40 GPa for a, AP, and y, respec-
tively. These assumptions correspond to a volume in-
crease of 7.85x10% m>. The horizontal and vertical dis-
placements were calculated using MaGCAP-V ver. 1.7
(Magnetic and Geodetic Computer Analysis Processes for
Volcano [12]) with varying depths for the inflation source
in the range of 0—10 km [11]. Fig. 2 and Figs. 4-6 (in
Appendix A) show examples of calculation results as-
suming the depth of the inflation source to be 2.5 km,
5.0 km, 7.0 km, and 10.0 km below sea level just be-
neath Shin-Motoshirane crater or Yugama crater. These
results indicate that the crustal deformation associated
with deep magmatic intrusions cannot be detected at the
pre-existing GNSS observation sites that are concentrated
around Yugama crater; thus, it is necessary to disperse the
observation sites within 15 km of the summit area. Con-
sidering the simulation results and accessibility, we deter-
mined the location of ten sites consisting of four continu-
ous sites (KSH1, KSM1, KSZG, and SHG1) and six cam-
paign sites (NHH, TMG, YNG, OGR, NZL, and NKD).
Table ?? shows the locations of those sites and the de-
tailed observation settings. As described later, KSM1
and SHG1 started continuous observation after conversion
from campaign observation sites (MSN and SSG, respec-
tively).

2)

3.2. Installation

We installed GNSS observation sites from the summer
of 2017 to the autumn of 2018. In 2017, eight sites (MSN,
SSG, NHH, TMG, YNG, OGR, NZL, and NKD) were
set up for campaign observation. In 2018, four contin-
uous observation sites (including two conversions from
the campaign sites) were installed. Six of the campaign
observation sites were built using a stainless-steel plate,
upon which a tribrach adapter was mounted (Fig. 7 in Ap-
pendix A). This stainless-steel plate was attached to a pre-
existing building using a rubber sheet so as to track five or
more GNSS satellites. For MSN, located at the southern
rim of Shin-Motoshirane crater, we fixed a stainless-steel
bolt, 6 cm in length, onto a stiff rock constituting a lava
dome (Fig. 7B in Appendix A). For TMG, we buried a pin
on the asphalt as a marker for tripod installation (Fig. 7C
in Appendix A). We carried out campaign observations
during a calm and dry autumn season without typhoons
to avoid a warm and wet climate. During the campaign
observation, four sets of GNSS equipment were used to
perform a three-day observation twice. Each set of GNSS
equipment consists of an antenna (JAVAD GrAnt G3T)
and a receiver (JAVAD Sigma G2T). The sampling rate
and elevation mask were set at 30 s and 10°, respectively.

746

In conjunction with the installation of campaign obser-
vation sites, we set up the continuous sites around KSV
one after another: Shizukayama (KSZG) in March 2018
and Manza (KSH1) in May 2018 (Fig. 1). The former is
located at approximately 2.5 km WNW from the Yugama
crater, and the latter is approximately 5.5 km SE from
the crater. In addition, we converted a campaign site
(SSG) into the continuous one (SHG1) in May 2018. At
these three sites, we installed the GR10 GNSS receiver
and AR10 antenna (Leica Geosystems). AR10 is a multi-
purpose antenna with an integrated radome, which could
prevent ash from adhering to the antenna. Finally, we
started operating the campaign site (MSN) as a contin-
uous site (KSM1) using the same GNSS equipment used
for campaign observation (JAVAD Sigma G2T and GrAnt
G3T) in October 2018. The data measured at these con-
tinuous observation sites are telemetered using the mo-
bile phone network (Docomo 3G FOMA). Specifically,
the Wi-Fi router is turned on by a mechanical timer for
only one hour (9:00-10:00 JST) every day to establish
an internet connection for the GNSS receiver. During
that time, the raw carrier phase and pseudo-range data
stored in the receiver are downloaded via FTP from the
data server in KSVO. This extension of the GNSS obser-
vation network is expected to lead to the detection of a
wider range of crustal deformation, caused by inflation of
the deep magma reservoir of KSV.

3.3. Data Processing

For data measured by the campaign observation, we
performed precise point positioning with ambiguity res-
olution (PPP-AR) [13] analysis to determine the posi-
tion of each site; then, we calculated their displacements
and the baselines between them. PPP-AR is a position-
ing technique that is able to compute an accurate so-
lution with a single receiver without any reference sta-
tions [13]. Because the raw data were recorded as a JPS
file (native format file of JAVAD GNSS receiver), they
were converted to a RINEX file using JPS2RIN software
(ver.2.0.112, JAVAD GNSS). Then, the converted RINEX
data were used to calculate daily positions in reference to
the IGS0O8 by PPP-AR analysis using GIPSY OASIS II
ver. 6.1.2, developed at the NASA Jet Propulsion Labora-
tory (JPL) [13]. Taking into account the ocean tide load-
ing values, FES2004 was adopted as ocean tide model for
each observation site [14]. During the data processing, we
also considered the GNSS antenna phase characteristics
consisting of antenna phase center offset and phase cen-
ter variation factor of the antenna. The wet atmospheric
delay effect was corrected using the global mapping func-
tion (GMF) [15], based on numerical weather model data
obtained by JPL. The clock data files were downloaded
from the FTP server of the Crustal Dynamics Data In-
formation System (CDDIS), provided by NASA. Calcula-
tion of relative displacements and mapping of their spatial
distribution were also performed using MaGCAP-V. We
adopted the GEONET 020982 site, one of the nationwide
GNSS network sites operated by GSI, as the reference site
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Fig. 2. Distribution of horizontal displacement (red arrow) based on the Mogi model when an inflation source is assumed to be
located beneath the Shin-Motoshirane crater at 0, 2.5, 5.0, 7.5, and 10 km below sea level.

Table 1. Description of GNSS stations around Kusatsu-Shirane volcano including pre-existing sites of KSVO.

Site Place name in Japanese Latitude [degree] | Longitude [degree] | Elevation [m] | Continuous/Repeated Power source
KSZG Shizukayama i 36.6010 138.5721 1270 Continuous AC power
KSH1 Manza T3 Jig 36.6344 138.5100 1681 Continuous AC power
NHH Naganohara B2 g 36.5514 138.6317 624 Repeated Battery

TMG Tsumagoi LEEFAN 36.5481 138.4654 1394 Repeated Battery

YNG Yonago kT 36.6123 138.3577 690 Repeated Battery

NKD Kasadake ==X 36.6670 138.4603 1492 Repeated Battery
SSG/SHG1 | Shiga Kogen EEER 36.7108 138.4951 1595 Repeated — Continuous | Solar+Battery
NZL Nozoriko L3l 36.6914 138.6520 1591 Repeated Battery

OGR Ogura \V<y 36.6656 138.6115 1150 Repeated Battery
MSN/KSM1 | Motoshirane ENELi 36.6212 138.5347 2135 Repeated — Continuous | Solar+Battery
KSE! Yugama higashi | %485 36.6438 138.5446 1941 Continuous AC power
KSYG Yugama Uk 36.6413 138.5347 2057 Continuous AC power
KSR Rest house VARANT R | 36,6378 138.5344 2012 Continuous AC power
KSW Yugama nishi YV E il 36.6471 138.5267 2096 Continuous AC power

! Stopped during October 2018 and November 2018.

to calculate the relative displacement so as to remove the
common crustal deformation caused mainly by the post-
seismic deformation of the 2011 Tohoku-Oki earthquake
(e.g., [16]).

To calculate the baseline lengths at each site, we used
calculation services provided by GSI (https://vldb.gsi.go.
jp/sokuchi/surveycalc/main.html) for two steps of con-
version of the coordinate values 1) from earth-centered,

Journal of Disaster Research Vol.14 No.5, 2019

earth-fixed (ECEF) to latitude-longitude-geoid height,
and 2) from latitude-longitude-geoid height to north-east-
up (NEU). For the NEU reference frame, we applied the
Japan Plane Rectangular CS (VIII for SHG, NKD, YNG,
and IX for NHH, OGR, NZL, TMG, KSM, KSYG, KSR,
and KSW). Baseline lengths were calculated using the
Pythagorean theorem in three-dimensions.
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4. Results: The First and Second Campaign
Observations

The first campaign observation was performed from
middle to late October 2017. After the occurrence of
a phreatic eruption at Mt. Motoshirane on January 23,
2018 [3], we performed an urgent temporary observation
during early February. On account of snow coverage,
some sites were inaccessible; eventually, we were able
to access only five sites: NHH, YNG, OGR, NKD, and
SSG in the latter observation. As described above, we
carried out the measurements for more than three days at
each site; thus, we analyzed the daily data. Therefore, the
mean coordinate values were adopted as the positioning
results for the observation period, in which apparent out-
liers were excluded. Table 4 (in Appendix A) shows the
coordinate values of each GNSS observation site, includ-
ing pre-existing sites of KSVO.

The standard deviations, representing the accuracy of
the first campaign observation, are sufficiently small (less
than 5.3 mm and 21.7 mm for horizontal and vertical di-
rections, respectively). Given the surrounding circum-
stances, a multipath error caused by nearby trees is pos-
sibly contained in the data at OGR. For the second cam-
paign observation, it is considered that the OGR and SSG
data contain multipath errors caused by the surrounding
SNOW.

Figure 3 and Table 2 show the displacement of each
site and the change in baseline length (distance between
each site with Naganosakae) between the first campaign
observation and the second one. During October 2017
to February 2018, the horizontal displacement shows
an eastward trend at all sites, except YNG and OGR.
The vertical displacements are positive (i.e., upward) for
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Table 2. The amount of displacement relative to the elec-
tronic reference point of GSI (Naganosakae, 020982) during
October 2017 to February 2018 detected by our GNSS net-

work.

Site Eastward | Northward | Upward Baseline
displace- |displace- |displace- |change
ment [mm] | ment [mm] | ment [mm] |between

Naganosakae
[mm]

NHH (2.3 -0.9 21.5 0.8

OGR |—-143 0 -3.1 0.7

SSG 0.7 5.3 —56.6 —6.6

NKD [1.3 3.1 24 —-2.8

YNG |—0.1 5 -30.5 -3.5

KSYG |4.1 7 54 -7.7

KSW | 1.7 11.3 11.5 —10.7

KSR |73 6.7 54 -84

NHH, NKD, KSYG, KSW, and KSR, and negative (i.e.,
downward) for OGR, SSG, and YNG. Table 3 shows
changes in the length of each baseline (between each pair,
XYZ in reference to the GRS80) during October 2017 to
February 2018. The baseline change in this period is less
than 18.2 mm. Because our data is not continuous (i.e.,
campaign observation for a few days) and the scale of the
2018 eruption at Mt. Motoshirane was small, it is nearly
impossible to discuss the contribution of the eruptive ac-
tivity to our data.
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Table 3. Change in baseline length between each site during October 2017 to February 2018 detected by newly built GNSS network.

Baseline length change [mm]

NHH | NKD | OGR | SSG | YNG | KSYG | KSR KSW
NHH - —-1.3 4.7 1.0 —6.0 5.8 1.9 114
NKD —-13 | - 10.6 —-2.1 | 8.1 -2.5 —10.8 | —4.8
OGR 4.7 10.6 - 13,5 | 6.7 —-104 | —182 | —12.8
SSG 1.0 —2.1 13.5 - 4.2 0.6 -7.7 -1.9
YNG —6.0 | 8.1 6.7 4.2 - -5.9 —14.0 | 7.6
KSYG | 5.8 -2.5 —10.4 | 0.6 -59 | - —2.7 |40
KSR 1.9 —-108 | =182 | =7.7 | —14.0 | =27 - 8.9
KSW 114 | —438 —-128 | =19 | =7.6 | 4.0 8.9 -

5. Summary and Perspective

We installed GNSS observation sites near Kusatsu-
Shirane Volcano in an effort to detect the crustal deforma-
tion associated with deep magma intrusion. The first ob-
servation result shows that our extended GNSS network
works well despite some exceptions due to surrounding
circumstances. In the present study, crustal deformation
associated with the phreatic eruption at Mt. Motoshirane
was not detected. The primary factor is its smallness in
eruption scale; however, we also have problems that need
improving in terms of analysis. To extract the crustal de-
formation caused by the magmatic activity of KSV, sev-
eral influences, such as the 2011 earthquake off the Pa-
cific coast of Tohoku have to be corrected from the mea-
sured positioning data. We believe that the continuation of
observations would contribute to the monitoring of long-
term volcanic activity near Kusatsu-Shirane Volcano.
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