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Owing to the advances in information technology and
heightened awareness regarding disaster response,
many evacuation simulations have been performed by
researchers in recent years. It is necessary to develop
suitable disaster prevention plans or evacuation plans
using data generated by such simulations. However, it
is difficult to understand the simulation results in their
original form because of the detailed and voluminous
data generated. In this study, we focus on tensor de-
composition, which is employed for analyzing multi-
dimensional data, in order to analyze the evacuation
simulation data, which often consists of multiple di-
mensions such as time and space. Tensor decomposi-
tion is applied to the movement trajectory data gener-
ated in the evacuation simulation with the objective of
acquiring important disaster or evacuation patterns.

Keywords: evacuation simulation, trajectory data, tensor
decomposition

1. Introduction

The analysis of the damage status based on disaster
simulations is expected to be an important disaster pre-
vention measure in the area of disaster response. The
analysis of the damage status can contribute to the deter-
mination of evacuation paths and disaster response plans,
or the improvement of urban infrastructure. With the
improved performance and increased storage capacity of
computers in recent years, a vast amount of simulation
data is being generated.

However, there have been relatively fewer studies on
the development of technology related to the use of large
datasets, and thus, although a large number of simulations
have been conducted, their results have not been utilized
effectively. Although there have been studies on the mod-
eling of disaster simulations [1, 2], the effective usage of
the simulation results remains an issue. It is necessary
to understand the results and analyze the influencing fac-
tors of a simulation in order to obtain guidelines for new
simulations or new findings. For instance, in evacuation
simulations, it is necessary to identify the factors that hin-
der evacuation [3]. Various approaches [4–7] can be used
to assist in such an analysis.

In this study, our objective is to develop a technology
for analyzing disaster simulation data. Specifically, this
paper is focused on the analysis of evacuation simula-
tion data. Evacuation simulations are considered to have a
high degree of uncertainty because the behavior patterns
vary depending on the specific disaster conditions. Fur-
thermore, the generated data are characterized by many
attributes including temporal and spatial information. The
classification of such highly uncertain results into charac-
teristic patterns while taking into consideration the multi-
ple attributes would be useful in the factor analysis of the
simulation results.

In this study, we employ tensor decomposition as the
analytical tool. In tensor decomposition, based on the as-
sumption of low rank, i.e., that the tensor elements can
be approximately decomposed into small groups (called
ranks), the tensor is decomposed as a product of low-rank
matrices (called factor matrices). As high-dimension ten-
sors can be decomposed into low-dimension ones while
retaining the characteristic information contained in the
original data, tensor decomposition is applied in vari-
ous fields such as noise processing and feature extrac-
tion of images or audio data [8, 9]. Furthermore, as high-
dimension tensors can be used to comprehensively exam-
ine multi-dimensional, complex information and classify
it into groups, it is expected to produce findings that are
different from those based on simple piece-wise analyses
and is used, for instance, in item recommendation based
on purchase histories with multiple attributes [10]. In this
study, we apply tensor decomposition to the movement
trajectory data generated by an evacuation simulation in
order to identify important patterns of disasters or evacu-
ation.

This paper is structured as follows. Section 2 describes
the dataset employed. Section 3 discusses the method of
tensor decomposition. Section 4 describes the analysis
used for the dataset. Section 5 presents the conclusion of
our study and the future scope of study.

2. Evacuation Simulation Data

Section 2.1 describes the evacuation simulation data
used in this study, and Section 2.2 presents an outline of
the collated simulation results.
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Table 1. Evacuation data.

Attribute Meaning Remarks
t Time In 0.1-min intervals over a 24-h period
uid Person ID 13,487 people (serially numbered from 1)
x, y X, Y coordinates Japan Plane Rectangular Coordinate System IX
status Status of person See Table 4.

Table 2. Building damage data.

Attribute Meaning Remarks
t Time Same as Table 1
uid Building ID 4,392 units
collapsed Collapsed or not 0: Not collapsed; 1: Collapsed
stage Fire stage 0: Fire not started; 1: Possibility of catching fire 2: Burning; 3: Extinguished

Table 3. Road damage data.

Attribute Meaning Remarks
t Time Same as Table 1
uid Road ID 2,720 road sections
blocked Blockage status 0: Unblocked; 1: Blocked
dens Population density Population density

Table 4. Person status.

Status Meaning
StayHome Present at home when earthquake occurs
StayOther Present at some building when earthquake occurs
Move Walking outdoors when earthquake occurs
StayIttoki Staying at temporary site
Safe Staying at wide-area evacuation center
Search Searching for evacuation path
HinanIttoki Moving toward temporary site
HinanIttoki2 Arrived at temporary site
HinanKoiki Moving toward wide-area evacuation center
HinanKoiki2 Arrived at wide-area evacuation center
Rescue Participating in rescue activities
Fire Participating in fire-fighting activities
Konnan Trapped in urban area
Death Those killed

2.1. Dataset

The simulation data was provided by the Osaragi Labo-
ratory, Tokyo Institute of Technology. A wide-area evac-
uation simulation [2] was conducted based on the Tokyo
Inland Earthquake. The occurrence of a 6-plus seismic-
intensity earthquake is simulated with its epicenter lo-
cated in the northern part of Tokyo Bay, with the simu-
lation focus being on the Kitasenju district of the Tokyo
metropolitan area. This district has a high risk of fires and
building collapse owing to its high concentration of old
wooden buildings, and it is difficult to conduct a wide-
area evacuation because the district is surrounded by the
Arakawa and Sumidagawa Rivers, thus making it an ex-
tremely high-risk area at times of disaster.

In this simulation, it is assumed that, in a situation in
which multiple fires have occurred in several buildings
following the earthquake, the people in the area move
toward wide-area evacuation centers. The people select
actions amidst the occurrence of building collapses, road

blockages, and fires spreading from building to building.
Those able to move temporarily gather at temporary evac-
uation sites and then move on to the wide-area evacuation
centers. In addition, depending on their circumstances,
some people engage in rescue or fire-fighting activities.

The simulation data consists of the evacuation behav-
ior (Table 1) of 13,487 people and damage status of
4,392 buildings (Table 2) and 2,720 roads (Table 3) dur-
ing the 24-h period following the earthquake. The evacu-
ation behavior data consists of the status-and-trajectory
data including the individuals’ geographic coordinates
and their evacuation statuses (classified into 14 types; Ta-
ble 4) at given times following the earthquake. The build-
ing and road data record show the status of fires and road
blockages.

2.2. Collation of Results
In this section, we perform a simple collation of the

evacuation behavior data in order to obtain an outline of
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Fig. 1. Share of statuses during 24-h period following earth-
quake.

the simulation results. First, Fig. 1 shows the collated re-
sults of the people’s status over the 24 h following the
earthquake. The abscissa and ordinate, respectively, rep-
resent the time (min) and the percentage of the number of
people corresponding to various states.

It can be observed that, with the passage of time, the
number of people present at home decreases, while the
number of people who have arrive at the wide-area evacu-
ation centers increases. On route, many of them temporar-
ily evacuated to temporary sites. Thus, it can be observed
that many of those staying home first move to the tempo-
rary sites and then move on to the wide-area evacuation
centers. The number of those who completed the evacu-
ation increases significantly approximately 5–6 h and 8 h
after the occurrence of the disaster, and this situation re-
mains mostly unchanged subsequent to 8 h after the disas-
ter. Moreover, the statuses changes significantly approxi-
mately 1 h after the earthquake.

A certain number of people are killed at the time of the
earthquake, following which this number increases grad-
ually. The number of people trapped also increases grad-
ually, then subsequently decreases, from which it can be
speculated that some of them die during this time. Mean-
while, a certain number of people engage in rescue activi-
ties immediately after the earthquake and after the major-
ity of people have been evacuated.

From the above observations, we see that the evacua-
tion behavior data changes very little in the period that
follows 10 h after the earthquake, and thus, we subject the
data for up to 10 h to analysis. We thus collated the data of
people who travelled since the earthquake occurred up to
10 h later. Those whose minute-by-minute position coor-
dinates changed were considered as those who travelled,
and we collated their number (hereafter “number of mov-
ing people”) and their average travel distance per minute
(hereafter “average travel speed”). The number of moving
people (blue curve in upper graph) and the average travel
speed (red curve in upper graph) are shown along with
the percentages of statuses (lower graph) in Fig. 2. The
abscissas represent the time (min), the left ordinate in the

Fig. 2. Movement of people, travel speed, and share of
statuses for the 10-h period.

upper graph the number of moving people, and the right
ordinate the travel speed (m/min), while the ordinate of
the lower graph represents the percentages of the statuses
relative to the total number of people.

The times at which the statuses display considerable
changes coincide with peaks in the number of moving
people and travel speed. The average speed falls with the
passage of time, except at the peaks. Although the travel
speed is low immediately after the earthquake, the num-
ber of moving people is high. The maximum number of
moving people is approximately 2,500, which is approxi-
mately 19% of the total number of people. The maximum
travel speed is approximately 80 m/min, which decreases
to 20 m/min subsequent to 8 h after the earthquake. Con-
sidering that travel for evacuation no longer takes place
as the majority of people have completed evacuation, it
can be speculated that this figure indicates the movements
within restricted ranges of those engaged in rescue activi-
ties or those trapped in buildings.

We next render a visual of the statuses of people, build-
ings, and roads. As the evacuation simulation is based on
the actual location of Kitasenju district, visualization can
be presented using a map. Leaflet [11] was used for visu-
alization on the map. Leaflet is an open-source JavaScript
library that can be used to display Web maps on a browser.
It allows one to set up objects such as markers, lines, and
polygons on the map. The objects can be set up as pop-
ups and embedded with information. Layers can also be
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(a) At the time of earthquake occurrence (b) 10 h after the earthquake occurrence

Fig. 3. Number of people in target zone and vicinity.

(a) At the time of earthquake occurrence (b) 10 h after the earthquake occurrence

Fig. 4. Geographical locations of building fires and collapses in target zone and vicinity.

(a) At the time of earthquake occurrence (b) 10 h after the earthquake occurrence

Fig. 5. Geographical locations of road blockages in target zone and vicinity.

introduced, where different layers can be switched to dis-
play different maps and objects.

The locations at which people are present at the time
of the earthquake and 10 h later are shown in Fig. 3. The
target area was divided into 50 m × 50 m grids, in each
of which, the number of people was collated, the results
of which are displayed using different shades of blue. It
can be observed that people were scattered widely within
the zone indicated by “A” at the time the occurrence of
the disaster. It can also be observed that the people have
evacuated to several sites 10 h later when evacuation was
completed. The majority of the people evacuated to the
three locations (labeled B-1) in the upper part of the map;
they make up over 80% of the population considered. It
can also be observed that some people evacuated to parks
and schools (labeled B-2) located southeast of the target

zone. Although low in number, there are also people still
remaining in the target zone, who are considered to be en-
gaged in rescue activities, trapped within collapsed build-
ings, or dead.

The statuses of buildings and roads at the time of the
earthquake occurrence and 10 h later are shown in Figs. 4
and 5, respectively. The area was divided into grids as
shown in Fig. 3, and the damage status of the buildings
and roads are indicated by different shades of color. The
grids with a high proportion of buildings that have caught
fire or collapsed are indicated by red, while those con-
taining many road blockages are indicated by grey. It
can be observed that the damaged buildings and roads
both increase with the passage of time. In particular, the
buildings become extensively damaged, which indicates
that fires have spread out centered in the zone labeled C.
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Fig. 6. CP decomposition.

Meanwhile, the roads tend to become blocked immedi-
ately after the earthquake, and the change in their damage
status is low in comparison to the spreading of fires among
buildings and the collapse of buildings.

3. Tensor Decomposition

In this section, we describe the method of Tensor de-
composition applied to the dataset. Here, we decompose
a third-order tensor into three low-rank matrices (called
the factor matrices). We employ Non-negative Tensor
Factorization (NTF) [8] in this study. In this method,
CANDECOMP/PARAFAC (CP) decomposition (Fig. 6)
is applied to a tensor while maintaining the non-negativity
constraint. After the tensor has been decomposed, the el-
ements are reconstructed from the factor matrices in con-
formance with the original tensor.

In Section 3.1, we describe the application of NTF to a
third-order tensor. In Section 3.2, we describe how to re-
construct the elements of the tensor produced by decom-
position.

3.1. Non-Negative Tensor Factorization
In NTF, a third-order tensor X = [xi jk]∈R

I×J×K is de-
composed into three factor matrices of rank R, A = [air] ∈
R

I×R,B = [b jr] ∈R
J×R and C = [ckr] ∈R

K×R. The tensor
produced from this decomposition X̂ = [x̂i jk]∈R

I×J×K is
expressed as the product of the three factor matrices. The
elements x̂i jk of the tensor are expressed as follows:

x̂i jk =
R

∑
r=1

airb jrckr . . . . . . . . . . . (1)

A, B and C are determined in order to minimize the er-
ror between the original tensor X and the tensor after the
decomposition of X̂ . The sum of the errors of the corre-
sponding elements of the tensors is used as the error.

minimize
A,B,C

D(X |X̂ ) =
I

∑
i=1

J

∑
j=1

K

∑
k=1

d(xi jk|x̂i jk)

subject to A,B,C ≥ 0

(2)

where the element-wise error d(xi jk|x̂i jk) is the general-
ized Kullback-Leibler divergence:

d(p|q) = p(log p− logq)− (p−q) . . . . . (3)

As it is difficult to simultaneously determine all of the

Algorithm 1 Estimation of factor matrices

Input: X ,R,E
Output: A,B,C

initialize ε
initialize A,B,C with small random values
while ε ≥ E do

update A = [air] by Eq. (4)
update B = [b jr] by Eq. (5)
update C = [ckr] by Eq. (6)
update X̂ = [x̂i jk] by Eq. (1)
lossnew = D(X |X̂ )
ε = lossold − lossnew

lossold := lossnew

end while

variables, the local solution of a single variable is esti-
mated while the two other variables are kept constant, and
this procedure is repeated. In other words, the solution
is updated in order to make the partial differential of the
error D equal zero. The final update expressions of the
factor matrices are as follows:

anew
ir = air

J

∑
j=1

K

∑
k=1

xi jk

x̂i jk
b jrckr

J

∑
j=1

K

∑
k=1

b jrckr

. . . . . . . . (4)

bnew
jr = b jr

I

∑
i=1

K

∑
k=1

xi jk

x̂i jk
airckr

I

∑
i=1

K

∑
k=1

airckr

. . . . . . . . (5)

cnew
kr = ckr

I

∑
i=1

J

∑
j=1

xi jk

x̂i jk
airb jr

I

∑
i=1

J

∑
j=1

airb jr

. . . . . . . . (6)

Algorithm 1, which is based on these expressions, is
presented below. The factor matrices are updated until the
error between the original tensor and the tensor produced
from the estimated factor matrices converge.

3.2. Reconstruction of Elements
As there is a large error between the tensor X̂ gen-

erated from the estimated A, B, and C, and the original
tensor X , without modification, X̂ cannot be compared
with the original data. Therefore, by considering the es-
timated tensor X̂ , a tensor X̄ is produced in which the
elements are reconstructed such that they have the same
form as the original tensor X . X̄ = [x̄i jkr] ∈ R

I×J×K×R

is a fourth-order tensor in which the rank is added to the
dimensions of the original tensor. The elements x̄i jkr of
X̄ are normalized with respect to the elements air, b jr,
and ckr, which are reconstructed for each rank, such that
their sum in the direction of the rank is equal to that of the
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elements xi jk of the original tensor. Thus, we obtain the
following expression.

x̄i jkr = xi jk
airb jrckr

R

∑
r=1

airb jrckr

. . . . . . . . . (7)

The actual analysis is performed using X̄ .

4. Analysis Scenario

In this section, we generate a tensor from the evacu-
ation simulation data described in Section 2 and subject
it to analysis. We perform the tensor decomposition de-
scribed in Section 3 and conduct the analysis using the
tensor X̄ = [x̄i jkr] ∈R

I×J×K×R, which is decomposed ac-
cording to rank. While the evacuation simulation data can
be subjected to various analyses, we focus on the person
movement trajectory data (Table 1) as an example and
analyze the statuses and movement of people.

Here, we conduct an exploratory analysis based on vi-
sualization. Visualization is a valid method for analyzing
large-scale and detailed datasets as it allows one to under-
stand the situation visually without directly referring to
the numerical data. Visualization on the map is prepared
using Leaflet [11] as mentioned in Section 2.

As the evacuation simulation data is closely tied to
spatio-temporal patterns, we select the time and geo-
graphical location as essential dimensions in the tensor
design. We also use a third dimension of the people’s be-
havior and direction of movement, to produce two types
of tensors – time × location × people’s status and time ×
location × direction of movement – and decompose and
analyze these tensors.

The method of determining the rank R is important in
analyses that employ tensor decomposition. However,
there is no standard for determining a suitable R, and it
is determined depending on the characteristics of the ten-
sor or the purpose of analysis [10, 12]. As there have been
no previous works on the application of tensor decompo-
sition to evacuation simulation data, we perform a coarse
analysis to examine how the evacuation patterns are di-
vided. The lowest dimensional sizes of the two types of
tensors produced are 14 and 16, which are quite small.
Thus, we use R = 5 in the present analysis.

4.1. Analysis of Status
4.1.1. Tensor Construction

We construct a third-order tensor X = [xi jk] ∈ R
I×J×K

comprising the people’s statuses obtained from the travel
trajectory data. The dimensions are time, location, and
person status, and the elements represent the correspond-
ing numbers of people. In other words, the tensor con-
tains information on how many people there are “when,”
“where,” and “in what condition.” The data are collated
for time units of minutes and for geographical units of
50 m × 50 m grids. As the original data is recorded in 0.1-

min intervals, we employ the average of ten position co-
ordinates and the person statuses recorded at integer min-
utes. The sizes of the dimensions are I = 601, J = 1770
and K = 14, each consisting of non-negative integer-
valued elements. There are 278,493 non-zero elements,
which make up approximately 1.9% of the total elements.

4.1.2. Tensor Decomposition
We perform tensor decomposition for the rank R = 5.

We observe the time, position, and person status for the
five ranks and examine the results. From X̄ , the time
× rank matrix Ā, location × rank matrix B̄, and status ×
rank matrix C̄ are obtained as follows:

Ā = [āir] =
J

∑
j=1

K

∑
k=1

x̄i jkr . . . . . . . . . (8)

B̄ = [b̄ jr] =
I

∑
i=1

K

∑
k=1

x̄i jkr . . . . . . . . . (9)

C̄ = [c̄kr] =
I

∑
i=1

J

∑
j=1

x̄i jkr . . . . . . . . . . (10)

C̄ is presented using a cumulative bar chart in Fig. 7.
Rank 2 (orange) comprises a large portion of deaths and
people engaged in rescue activities. It is also high in the
number of people who have completed evacuation. Rank
3 (green) is high in the number of people who are trapped.
Rank 4 (red) is high in the number of people at home be-
fore they evacuated. It is also relatively high in the num-
ber of people engaged in rescue activities. Ranks 1 (blue)
and 5 (purple) make up a certain portion of those stay-
ing home, those at temporary sites, and those who have
completed evacuation. As these ranks are absent among
the deaths and those engaged in rescue activities, it can be
speculated that these ranks include a high portion of the
number of people who have evacuated safely.

Next, Ā is presented using a cumulative bar chart in
Fig. 8. Rank 4 decreases with the passage of time in
agreement with the observation made above that it is high
in the number of people at home before evacuation. Rank
5 increases in time with the decrease in rank 4, which in-
dicates that the people who were staying home are mak-
ing a transition to completion of evacuation. Furthermore,
rank 5 decreases significantly at approximately 330 min,
which suggests that it corresponds to those who evacuate
relatively early. It is then replaced by rank 3, which dras-
tically increases at approximately 330 min. Rank 2 does
not appear immediately after the earthquake, but increases
gradually up to 10 h later. This is thought to correspond to
the increase in deaths, which was observed in the original
dataset.

If we take Fig. 7 into consideration, those engaged in
rescue activities immediately after the earthquake corre-
spond to rank 4, while those engaged in rescue activities
after completion of evacuation correspond to rank 2. This
is confirmed by Fig. 9(a), which shows only the num-
ber of people engaged in rescue activities according to
rank at different times. Meanwhile, the deaths are also
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Fig. 7. Numbers of people in various statuses and their rank
composition. Fig. 8. Rank composition of people plotted against time.

(a) Rescue (b) Death

Fig. 9. Rank composition of people plotted against time.

represented by ranks 2 and 4, which correspond respec-
tively with the deaths immediately after the earthquake
and those that increase with the passage of time, as ob-
served in Fig. 9(b), which shows only the deaths accord-
ing to rank at different times. As those who died should
ideally have been rescued, rescue activities often take
place at locations where deaths occur. Therefore, the find-
ing that deaths and rescue volunteers are classified under
the same ranks as the result of the tensor decomposition
is a desirable outcome.

From the standpoint of simulation, deaths occurring
immediately after the earthquake, as represented by rank
4, are closely connected to the locations of building col-
lapse and fire occurrences and cannot be prevented by hu-
man actions immediately following an earthquake. Al-
though it is important to undertake advance measures as
those buildings are highly dangerous, it is difficult to deal
with them with an evacuation simulation. Thus, in this
case, it may be more relevant to focus on the increase in
deaths as represented by rank 2.

While taking into consideration the above findings, we
next observe the locations of people. Fig. 10 shows the
results of B̄ on a map. Labels B-1 and B-2 are shown in
Fig. 3(b). Only the highest ranks for the grids are shown,
where the darker shades indicate that the rank has a higher
share. Those grids that contain very few people are omit-

Fig. 10. Ranks of geographical locations.

ted. It can be observed that rank 4 is dominant in a great
majority of zones. Rank 4 is the dominant rank immedi-
ately after the earthquake and includes a large number of
those staying home. As it decreases with the passage of
time, we can speculate that people are moving from zones
with a large share of rank 4 to other zones with a high
proportion of some other rank. Among the latter zones, it
is likely that the movement to zones of rank 5 occurs rela-
tively early and that to zones 2 and 3 occurs relatively late.
Rank 2 is found in those zones corresponding to labels B-
1 and B-2, which indicates that the people evacuated to
these wide-area evacuation centers. As this rank also cor-
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Fig. 11. Rank composition of people plotted against time.

responds to the increase in deaths and to those engaged in
rescue activities after completing evacuation, we can state
that the zones represented by rank 2 other than the evac-
uation centers require attention. Thus, by subjecting the
dataset to tensor decomposition, it is possible to identify
the characteristics of various locations without tracing the
movement trajectories of individuals in detail.

4.2. Analysis of People’s Movements
4.2.1. Tensor Construction

We construct a third-order tensor X = [xi jk] ∈ R
I×J×K

on the movement of people from the movement trajec-
tory data. We classify the direction in which a person
moves at 1-min intervals at each time and each location
into 16 directions and then collate the results. The time
and locations are the same as in Section 4.1. The ten-
sor has the dimensions of time, location, and direction
of movement, with the corresponding numbers of peo-
ple as the elements. In other words, the tensor contains
the information of how many people moved in which di-
rection, when, and where. The dimensions have the size
I = 601, J = 1770 and K = 16, and there are 92,462 non-
zero elements, which represent approximately 0.5% of the
total elements.

4.2.2. Tensor Decomposition
We perform tensor decomposition for rank R = 5. We

observe the time, position, and movement direction ac-
cording to the five ranks and examine the results. It should
be noted that the tensor decomposition is independent of
that described in the previous section, such that there are
no correspondences with the previous ranks.

First, the time × rank matrix Ā is represented by a
cumulative bar chart plotted against the elapsed time in
Fig. 11. Rank 4 displays a characteristic quite different
from the other ranks. The other ranks display significant
increases when there are peaks in the people’s movement.
However, rank 4 comprises a large portion in the time
zones that correspond to the steady movement of people.
In particular, while the other ranks decrease after evac-
uation is nearly completed, rank 4 remains at the same

Fig. 12. Ranks of geographical locations.

level and thus comprises a large portion. We thus specu-
late that this rank includes the movement of people who
do not belong to the major evacuating group. As men-
tioned in Section 2, such movements are those of people
engaged in rescue activities and trapped people, as well as
those evacuating to locations other than the major evacu-
ation centers.

The other ranks are nearly absent after the evacuation
has been completed and thus can be considered to be
related to movements during evacuation. However, the
ranks respectively display peaks at different times. Rank
5 is high in the relatively early time zones, while rank 3
is nearly absent during the steady-state time zones, it ap-
pears only during peaks. Rank 2 becomes dominant in the
peaks occurring in the later time zones. Rank 1 displays
peaks that are earlier than those of ranks 2 and 3.

While taking into consideration these observations, we
examine the zones. Fig. 12 shows the location × rank
matrix B̄ on a map. As in the previous section, only the
highest ranks are shown, and the zones with very few peo-
ple are omitted. The area labeled C and its vicinity mostly
comprises ranks 1 and 5, which indicates that the people
in these zones evacuated early. The majority of the ar-
eas wherein rank 3 dominates are found close to the zone
labeled B-1, which comprises evacuation centers. Based
on our earlier observation that rank 3 appears only during
peaks of movement, this rank can be considered to be a
major component of the movement of large numbers of
people to evacuation centers. Rank 4 is observed in sev-
eral zones along the major thoroughfare, and those located
to the southeast represent movements to label B-2, which
is a different evacuation site from the major evacuation
centers.

A map representing B̄ for the 30-min period after 9.5 h,
when most of the evacuation has been completed, is
shown in Fig. 13. It can be observed that the total number
of people moving is low as compared to those in the other
time zones, and that the areas in which movement occurs
are limited. During this time period, rank 4 is found to be
dominant in many areas. The movement of rank 4 during
this time period is shown in Fig. 14. The zones labeled
D, E, and F, which display many movements of rank 4,
are magnified. The grids show the average damage sta-
tus of buildings and roads as indicated by different shades
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Fig. 13. Ranks of geographical locations after evacuation is
complete.

Fig. 14. Detailed movements of rank 4 after evacuation is
complete.

of grey. Even though the evacuation has been completed,
people continue to move, and the directions of movement
within the individual zones tend to be dispersed in the
north-south or east-west directions. Furthermore, these
movements take place in locations that are somewhat dis-
tant from areas subjected to severe damage. Thus, it can
be speculated that these zones comprise trapped survivors
that still remain and wherein they and the rescue workers
are moving to and fro within a narrow area. Therefore,
this confirms the observation that rank 4 includes move-
ments that are different from the major evacuation trajec-
tories. These findings demonstrate that tensor decompo-
sition of the people’s movement facilitates the extraction
of characteristic components such as the major evacuation
movements and other specific actions.

5. Conclusion

In this paper, we proposed the use of tensor decom-
position for analyzing evacuation simulation data. While
specifically focusing on the movement trajectory data, we
performed an analysis of the statuses of people during

evacuation and the characteristics of their movement. The
movement trajectory data were collated to construct ten-
sors of the people’s statuses and movement. NTF was
applied to conduct an exploratory analysis based on visu-
alization. The results showed that the data can be classi-
fied into ranks representing the major and minor evacua-
tion movements, rescue activities, trapped victims, etc. In
this manner, we were able to extract characteristic compo-
nents regarding evacuation without tracing the movement
trajectories of individuals in detail.

There remain several issues, however, with regard to
the application of tensor decomposition. The method of
assigning the appropriate rank is a major issue in the re-
search of tensor-decomposition-based analysis [10, 12].
Although we selected R = 5, which is relatively low,
to perform the tensor decomposition, the selection of a
larger number may yield more detailed evacuation pat-
terns. However, there exists the risk that the dataset will
be classified into an excessive number of patterns and
that a single behavior pattern will be divided into mul-
tiple ranks. It is thus necessary to select the rank in an
exploratory manner according to the target “roughness of
analysis” based on how fine a classification pattern one
wishes to obtain. It is also necessary to examine the suit-
able metric of error convergence or the method of opti-
mization to improve the accuracy of the tensor decompo-
sition.

While we used NTF [8] for tensor decomposition in
the present study, other approaches should be investigated
as well. We constructed two tensors, one on the status of
people and the other on their movements and decomposed
them independently. If a tensor decomposition that takes
into consideration both tensors can be performed, it would
allow one to analyze the dataset by taking the people’s
statuses and movement into consideration simultaneously.
Context Aware Tensor Decomposition (CATD) [13] and
Non-negative Multiple Tensor Factorization (NMTF) [12]
are two examples of decomposition based on multiple ten-
sors. In these methods, the main tensor is augmented by
auxiliary tensors or matrices to improve the decomposi-
tion accuracy or perform analyses using a greater number
of dimensions. By suitably designing the tensors or matri-
ces and applying these methods, we can expect to obtain
characteristics that were not found in the present study.

In the present study, we subjected a single evacuation
simulation trial to analysis. However, simulations are usu-
ally performed for several trials. This requires the com-
parative analysis of multiple results. Such a comparative
analysis is possible by setting the simulation ID or setting
parameters as the dimensions when designing the tensor.
This should enable one to obtain results that are common
to a high number of simulations or extract characteristics
that are found in only a few of the simulations.
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