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Eruption scenarios were prepared as possible se-
quences in event trees for six active volcanoes in In-
donesia, that are located near populated areas or have
erupted in recent years (Galunggung, Guntur, Kelud,
Merapi, Semeru, and Sinabung). The event trees pre-
pared here show sequences of possible eruption phe-
nomena without probabilities on branches and cover
sequences experienced in historical and pre-historical
eruptions based on archives and field research results.
Changing magma discharge rates during eruption se-
quences were considered for the event tree of Merapi.
This conceptual event tree can also be used as a short-
term event tree in which forecasting the coming erup-
tion became possible with geophysical and geochem-
ical monitoring data. Eruption event trees prepared
for selected time windows cannot illustrate all plau-
sible hazards and risks associated with an eruption.
Therefore, hazards and risks generated from an erup-
tion should be considered in different domains from
the event tree.

Keywords: eruption sequence, event tree, volcanic haz-
ard, magma discharge rate, SATREPS

1. Introduction

An event tree of a volcanic eruption was previously
proposed for evaluating the risks from a coming volcanic
eruption [1]. It illustrates plausible eruption phenom-
ena (branches of the tree) with their probabilities based
on the eruption history of the volcano. The probabili-
ties of branching to different phenomena could be esti-
mated from real-time monitoring data. The event tree is
also important for the long to medium-term forecasting
of active volcanoes. Branching is considered for short-
term purposes in order to understand and forecast an on-
going crisis and eruption. Most of eruption event trees in
previous studies evaluate a single event, i.e., over a short

time window, and event tree analysis was performed as the
eruption progressed [2–4]. However, eruption and haz-
ards during a single eruption are not unique, and succes-
sively different phenomena and hazards may occur during
a short time window.

Merapi is one volcano whose eruption history has been
studied by many researchers, and an event tree was al-
ready proposed [5]. An explosive event occurred soon
after a less explosive event during the eruptions at Mer-
api in 2006 and 2010 [6, 7]. As a result, hazards dur-
ing a single eruption are different depending on their
location within the eruption sequence. Such hazards
include dome-collapse-type pyroclastic density current
(PDC), fallout ballistics and ash, and lahars during and
soon after the eruption. All hazards associated and risks
throughout a sequence are impossible to show in a sin-
gle event-tree chart. At least, possible eruption sequences
should be illustrated in the first step of an event tree. On
the other hand, the style of magmatic eruption (eruption
mode) largely depends on the magma discharge rate [8, 9].
Therefore, branching to different phenomena in the event
tree would be better ascribed to a changing magma dis-
charge rates, such as that prepared for the 2006 eruption
at Merapi [5].

The SATREPS project “Integrated Study on Mitigation
of Multimodal Disasters Cause by Ejection of Volcanic
Products” was conducted from 2015 to 2018, focusing
on six active volcanoes in Indonesia (Galunggung, Gun-
tur, Kelud, Merapi, Sinabung, and Semeru). We aimed at
preparing eruption event trees for these volcanoes based
on geological research archives and our field studies. The
purpose of constructing an event tree is to input the geo-
logical data, including phenomenon, magnitude, and pos-
sible hazards regarding a forthcoming or ongoing erup-
tion into the Early Warning System for volcanic eruption.
The system is the key platform used in the Support Sys-
tem for Decision Making (SSDM) for governance and
disaster management in Indonesia. The SSDM will in-
tegrate research from working groups and our studies of
those volcanoes. This report presents long to medium-
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Fig. 1. Index map of the six active Indonesian volcanoes
studied here.

term event trees for Galungung, Guntur, Kelud, Merapi,
Sinabung, and Semeru volcanoes based on the newest ge-
ological knowledge.

2. Field Research

Five volcanoes from the SATREPS Project (except
Sinabung) were examined; these five volcanoes are high-
risk, active volcanoes in Indonesia. Those volcanoes
stand near populated cities, and repeated recent eruptions
resulted in many fatalities. In 2010, Sinabung erupted
for the first time in its history and continued its eruptive
activity during the SATREPS project. Two major dome-
collapsed-type PDC events occurred, resulting in fatali-
ties. Thereafter, Sinabung was added to the list of volca-
noes considered in this project.

Field surveys of six volcanoes (Fig. 1) were conducted
by the Japan-Indonesia joint geologist team from 2010
to 2018. A field survey at Sinabung started before the
present project but soon after the phreatic events in 2010.
A field survey at Kelud was conducted in 2014 soon after
its Plinian eruption occurred. Merapi from 2011 to 2012,
Guntur from 2014 to 2015, Galunggung in 2015, and Se-
meru from 2016 to 2017. As the periods for our field stud-
ies were limited, we attempted to observe exposures with
multiple stratigraphic layers and collect charcoal chips
in those layers for 14C dating. Dating of the charcoal
samples and bulk chemical analyses of lava and tephra
samples were conducted in Japan. Utilizing abundant
geological archives before 1995 from the library of the
Center for Volcanology and Geological Hazard Mitiga-
tion (CVGHM) in Bandung were essential for this study.
Figs. 2 and 3 show an example of field research results
from Guntur volcano. Archives of these field data include
outcrop information, chemical analyses, and age determi-
nation, which are slated for publishing in the Indonesian
Journal of Geology in the near future.
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Fig. 2. Simplified geologic map of Guntur volcano. See the
text for details.

3. Event Trees

Newhall and Hoblitt [1] showed event trees where
the volcanic hazards and risks are sequentially chained
for individual eruptions with their probabilities (proba-
bility tree). The event tree normally starts from the un-
rest of eruption and extends through eruption phenomena
(events), event scales, extending distances, and sectors af-
fected, ending with risks in order of occurrence. Events
included as branching items are plausible phenomena at
the target volcano based on its surveyed eruption history,
volcanic characteristics from recent eruptions, or simply
based on the theoretical volcanological knowledge. In the
probability trees adopted by the Volcano Disaster Assis-
tant Program of USGS, as much of the data set as possi-
ble was used to consider the probabilities of various phe-
nomena, including in the event trees for the 2010 Mer-
api eruption [2, 5]. On the other hand, the probability
trees used in European countries are based on elicitation
of evaluations from team members who were individually
weighted in their volcanological experiences and reliabil-
ities [10]. In the Bayesian event tree (BET) method [9],
individual monitoring results from multiple monitoring
methods were weighted empirically or theoretically, and
the total probability at each node was compared with the
thresholds for entering different branches.

The eruption scenarios considered in this study simply
reflect to event trees for volcanic phenomena and possible
eruption sequences for the target volcano. Fig. 4 shows an
example of the event tree with very rough probability val-
ues for Sinabung volcano, North Sumatra, which is based
on our field research result in 2010 and was prepared soon
after the phreatic eruption [11–13].

Putting the probability values in branches is not easy
for volcanoes where the eruption histories are not well
known. Therefore, we initially aimed at constructing sim-
ple eruption scenarios without probabilities. The ages
of eruptions recorded recently were put on twigs in the
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in Fig. 2.
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Fig. 4. Eruption event tree of Sinabung volcano. The first version [11] was prepared after the 2010 phreatic eruption and was
subsequently modified [12].

event trees. Six event trees and their short explanations
are shown hereafter (Figs. 4 to 9).

3.1. Sinabung Volcano
Sinabung (2,460 m asl) is a Pleistocene-to-Holocene

stratovolcano with many lava flows at its flanks. The

phreatic eruption in 2010 was the first event recorded at
Sinabung volcano [14, 15]. As there was no geologic map
of this volcano, the joint team of Indonesia and Japanese
geologists conducted a field survey soon after the erup-
tion in 2010 [13, 16]. The eruption at Sinabung resumed
in September 2013; a lava dome appeared in December
2013 and grew to a lava flow complex [17, 18]. This erup-
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tion continued in June 2018. The site of the eruption
and its sequence were very close to those of the eruption
in the 9–10th century, which was confirmed by the field
study [13, 14, 16]. When the event tree was prepared by
our team [11], it was considered that juvenile particles ap-
pear in the volcanic ash of phreatic events once the mag-
matic stage is entered. Indeed, the presence of juvenile
particles in the volcanic ash from the 11 November 2013
Vulcanian events was confirmed [17]. This event tree did
not include the sequence from the lava dome/flow event to
a more explosive event. In reality, the explosive stage was
accompanied by repeated Vulcanian events beginning in
the summer of 2015 [17]. It is common that lava dome
eruptions are simply and dominantly effusive throughout
eruptions, except for short-lived explosive events in the
beginning or midway through the sequences, where the
magma discharge rate suddenly increases or a large col-
lapse of the dome occurs. The lava dome eruption at
Mount Unzen from 1991 to 1995 [19] was used to prepare
the event tree for Sinabung volcano soon after its 2010
eruption. This event tree is shown in Fig. 4.

3.2. Guntur Volcano
Guntur is a complex of several overlapping stratovol-

canoes located approximately 10 km northwest of the city
of Garut. It consists of a young large pyroclastic (scoria)
cone (2,249 m asl) and basal lava flows with pyroclas-
tic materials, which extend only in the southeastern part.
The young cone started its activity about 50,000 years
ago [20, 21]. It is obvious that the morphology shows
an accumulation of relatively fresh lava flows with lev-
ees, which came from the middle flank of the young cone
(Fig. 2).

According to the archives of the Global Volcan-
ism Network at the Smithsonian Institution (GVN)
(https://volcano.si.edu [accessed on July 31, 2018]), Gun-
tur volcano has 12 confirmed eruptions, with the largest
eruptions being VEI 3 (volcano explosivity index [22])
in 1690 and 1843. Lava flow eruptions were recorded in
1780 and 1840. In the latest eruption, a basalt lava flow
reached the Cipana village, 4 km southeast of the summit
crater (at the top of young cone). More than 170 years
have passed after the last eruption. In contrast to this
superficially quiet activity, seismic activity occurred fre-
quently under the summit and surroundings [23].

The sequences of recent eruptions are not well known.
Our field survey on Guntur volcano revealed deposits
from many eruptions (Fig. 3). 14C dating showed at
least 12 eruptions over this three hundred year period. In
this study, the presence of extensively-distributed PDC
and lahar deposits together with the stratigraphical re-
lationship between lava flows and scoria falls became
clear. The eruption sequences could be summarized as
follows. First, a scoria fall event was dominated in 1690.
Two eruptions during 1777–1780 started with a scoria
fall event, followed by a PDC event and further sco-
ria fall events, and finally concluding with a lava flow
event. Eruptions from 1803 to 1847 began with scoria

fall events, followed by lava flow events. The event tree
has a node corresponding to the vent location before the
eruption phenomena depending on the magma discharge
rates (Fig. 5). A phreatic event was not considered here
because clear phreatic events were not confirmed in the
field (Fig. 3).

3.3. Galunggung
The eastern slope of Galunggung volcano (2,168 m asl)

is cut by a large horseshoe-shaped caldera that breachs to
the southeast [24]. The hummocky surface with many
hills characterizing the debris avalanche is distributed
within the caldera and the eastern foot up to about 23 km
from the caldera headwall. Collapse is considered to have
occurred approximately 4,200 years ago [25]. Histori-
cal eruptions such as those in 1822 and from 1982 to
1983 were restricted to the central vent near the caldera
headwall. We attempted to find the eruption evidence
before the 1822 eruption and after the horseshoe-shaped
caldera collapse, and we attempted to determine the age
of caldera. Unfortunately, the deposits from such a period
and charcoal samples suggesting the caldera collapse and
old activities after the former were not found.

Among the eruptions at Galunggung recorded since the
early 19th century in the GVN archives, the eruption in
1822 was VEI 5, in which PDC and lahar events occurred
with approximately 4,000 fatalities, and the eruption from
1982 to 1983 was VEI 4, in which PDC and lahar events
followed the explosive event with heavy ash fall accord-
ing to the GVN archives. The latter eruption continued
for approximately 10 months, and the sequence was di-
vided into three phases [26]. In phase 1, explosive events
generated PDC events; in phase 2, phreatomagmatic ex-
plosive events opened the present maar crater; in phase 3,
Strombolian events occurred with lava flow. The eruption
columns during this eruption reached 10 to 20 km above
the crater. An aircraft incident is considered to have oc-
curred within the ash cloud due to a groundwater-related
explosive event early in phase 2 [27]. In the event tree
(Fig. 6), the crater was treated as the first node because
the presence of crater water was essential for the eruption
style (labelled “Phenomena”).

3.4. Kelud
In Kelud volcano (1,731 m asl), a cluster of lava domes

cut by numerous craters exhibits a very irregular profile
at the summit. According to the GVN archives, the sum-
mit crater was frequently filled with water, and devastat-
ing lahars were repeated by direct ejection of the crater
water during eruptions. PDC events from violent ex-
plosive events and lahars during recent eruptions caused
widespread fatalities and destruction. This resulted in
more than 5,000 deaths in the 1919 eruption and more
than 200 deaths in the 1966 eruption. The recent activity
in Kelud is characterized by explosive eruptions spreaded
by approximately 10 year intervals [28, 29]. A few erup-
tions forming lava domes without explosive events oc-
curred (e.g., from 2007 to 2008) [28–30]. An explosive
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eruption occurred on February 13, 2014 [31]. Before the
2014 eruption, the summit crater was plugged by the lava
dome from 2007 to 2008. The 2014 eruption started by
breaking of the lava dome with the Vulcanian event ac-
companied by lateral blasts, which was preceded by a
huge eruption column in the Plinian stage that reached as

high as ∼25 km asl [31]. The chemical composition of the
lava dome and pumices from the Plinian stage are nearly
identical (basaltic andesite). Considering the historical
disaster on this volcano, Fig. 7 shows that the presence
of a crater is one branching node, just as in the Galung-
gung event tree.
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3.5. Semeru

Semeru is the highest active volcano in Java Island
with elevation of 3,676 m asl, located in the southern end
of the Bromo-Tengger-Semeru volcanic massif. Accord-
ing to the summary by Siswowidjoyo et al. [32], Thouret
et al. [33] and the GVN archives, about 40 eruptions have
been recorded since the early 19th century, ranging up to
VEI 3. PDC events recurred every 5 years on average.
In 1884–1885, lava flowing at the summit generated land-
slides, explosions at the summit crater, PDC, and lahar
events. The eruption during 1910 to 1912 (VEI 3) started
with the explosive event at the summit, which was fol-
lowed by lava flow, PDCs, and lahars. Since 1967, fre-
quent small-to-moderate explosive events were repeated,
and large explosions sometimes generated PDCs and la-
hars. Lava dome growth at the summit and its disruption
by explosions and collapse also occurred during the re-
cent activity. The eruptions in 1895 and from 1941 to
1942 produced lava flows at the southeastern flank. At
least five large-scale lahars that exceeding 5 million m3

have occurred since 1884.
Our field study revealed the existence of tephra and

PDC deposits from relatively large explosive events at
the summit and flank, as well as the ages of these ac-
tivities [34]. Subplinian to violent Strombolian events
larger than recent events were repeated from the 3rd to
11th centuries. Around the 16th century, relatively large
eruptions occurred on the southwestern slope with ac-
cumulation of thick scoria falls and generation of PDCs
that destroyed the temple of the Majapahit Kingdom at
Candi Jawar (about 5.5 km southwest of the present sum-
mit crater). There are morphological characteristics sug-

gesting pre-historical lava flow and scoria cone-building
events mainly on the south to southwestern lower slopes.
The eruption sequence, from the lava flowing to an ex-
plosive event, should be considered to occur in the near
future.

The magma chemistry of Semeru volcano is bimodal
(andesite and basalt). Before the 3rd century, an-
desite magma produced explosive events near the sum-
mit. Basaltic magma eruptions were common at the flank
during the 3rd to 11th centuries. Andesite magma dom-
inated after the 11th century, and the summit eruptions
over these past 1,000 years are characterized by andesite.
The event tree (Fig. 8) treats the initial vent location as
the node of branching, considering the geological records
of eruptions.

3.6. Merapi
Merapi volcano (2,910 m asl) lies immediately north of

the major city of Yogyakarta. Merapi is one of the most
active volcanoes in Indonesia. There are many geologi-
cal research results on its volcanic history [35, 36]. Mer-
api has erupted every several years since the 16th cen-
tury. Hazards associated with these eruptions are PDC
and lahar events during the growth and collapse of the
summit lava dome. Eruptions in 1872 and 2010 were
largest among recent frequent eruptions with VEI 4, ac-
cording to the GVN archives. During the eruption in
2010, laterally-directed explosions occurred repeatedly
due to collapses of the summit lava dome, which grew
while sealing the upper conduit of magma. This gener-
ated pyroclastic flows that cascaded about 16 km from the
summit. As a result, at least 386 people were killed and
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hazards are different, as is obvious in historic eruptions. Therefore, branches with A, B, and C and those for D, E, and F are
considered for different vent locations. A phreatic event is not shown here for brevity.
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Fig. 9. Eruption event tree of Merapi volcano with variable magma discharge rates. Vulcanian events are possible when the crater
opens in phreatic eruptions and by pulse-like increases in the magma discharge rate. Eruption scenarios for Sinabung volcano can
also be considered in this event tree.

more than 300,000 people evacuated [2, 5, 37, 38].
The event tree shown in Fig. 9 is a rather concep-

tual diagram reflecting changes in the magma discharge
rate as an eruption advances. The eruptions in 2006 and
2010 are examples in which the magma discharge rate in-
creased during the later stage of the eruption. In other
words, the eruption phenomenon changed from normal

lava dome growth with collapsed-type PDC events to ex-
plosive events with sustainable towering of the eruption
column [3, 5].
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Fig. 10. Risk evaluation trees for hazards developed from each volcanic phenomenon. Lahar is a secondary hazard possible for
most primary hazards.

4. Discussion

The event trees prepared here consist of eruption phe-
nomena from individual volcanoes that were already ex-
perienced or are plausible. We could not put values of
probabilities for those individual events due to the incom-
plete database of eruption histories. Instead, the ages of
recent eruptions are shown at the right ends on the charts.
From this information, we could understand roughly how
the past eruptions advanced and what types of branching
were possible along the way. This information is very
helpful for anticipating upcoming eruptions. The concep-
tual event tree prepared for Merapi volcano (Fig. 9) may
be used as a short-term event tree. For example, escala-
tion in seismicity and EDM distance changes just before
the 2010 eruption at Merapi were much different from
those of the 2006 eruption [2], and the manner of seis-
micity just prior to the eruption onsets at Kelud in 2014
was different from that in 2007 [39]. As in the BET
method [40] or the idea already proposed at Sakurajima
volcano [41], those geophysical monitoring data prior to
the eruption onset can be used to determine the magma
discharge rates, which are used in an event tree such as
that shown in Fig. 9.

As already discussed, volcanic phenomena are variable,
even during a single eruption sequence. They may include
ash fall, PDC (surge and pyroclastic flow), lahar, lava
flow, ballistics, and tsunamis. The direction, distances,
and areas impacted by those phenomena are also variable,
depending on the intensities, weather conditions, and ge-
omorphological characteristics. The area affected by vol-
canic ash is extensive without the strong effect by geo-
morphology but is determined significantly by wind con-
ditions. Therefore, the impacted areas should be consid-

ered when assessing individual upcoming hazards. Lahar
is a secondary disaster and is always accompanied by ash
falls from the primary hazards, such as explosive magma,
phreatic eruptive events, and PDC events. Multiple haz-
ards with related risks during a single eruption are difficult
to illustrate within an event tree. Fig. 10 shows an idea
where possible hazards and risks are considered in do-
mains that are different from the eruption event tree. Mul-
tiple hazards are shown as branches from each eruption
phenomenon, which are followed by branches to assess
the impact of hazards and lahar. In this assessment, the
exposure and vulnerability for each hazard (direction and
distance) should be considered when evaluate the risks,
though these details are not discussed here. This shows
only a conceptual image on how we should consider the
risks from possible hazards that can arise from an eruption
event tree.

5. Concluding Remarks

We prepared the event trees that include possible erup-
tion sequences for Sinabung, Guntur, Galunggung, Se-
meru, Kelud, and Merapi based on the geological archives
and results from our field study. It is difficult to illustrate
multiple hazards that can possibly occur during a single
eruption sequence. In the event trees of both Guntur and
Semeru volcanos, the branching node on vent locations
(presence or absence of water in the crater) was consid-
ered first. The branching node for phenomena (eruption
styles) were considered next, which depend primarily on
the magma discharge rate. In the scenarios of Galung-
gung and Kelud volcanoes, the branching node on crater
conditions was considered first, and the branching node
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on phenomena was considered next. For Merapi volcano,
the magma discharge rate was considered to vary during
the eruption sequence, and the event tree can be used as
a short-term event tree. Catching changes in the magma
discharge rate may be possible when monitoring seismic,
geodetic and chemical data. This conceptual event tree to-
gether with hazard assessments in different domains may
be necessary for considering eruption sequences for most
volcanoes.
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