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The DIM2SEA research project aims to increase ur-
ban resilience to large-scale disasters. We are engaged
in developing a prototype Dynamic Integrated Model
for Disaster Management and Socioeconomic Analy-
sis (DIM2SEA) that will give disaster officials, stake-
holders, urban engineers and planners an analytic tool
for mitigating some of the worst excesses of catas-
trophic events. This is achieved by harnessing state-
of-the-art developments in damage assessment, spa-
tial simulation modeling, and Geographic Information
System (GIS). At the heart of DIM2SEA is an agent-
based model combined with post-disaster damage as-
sessment and socioeconomic impact models. The large
amounts of simulated spatial and temporal data gen-
erated by the agent-based models are fused with the
socioeconomic profiles of the target population to gen-
erate a multidimensional database of inherently “syn-
thetic” big data. Progress in the following areas is re-
ported here: (1) Synthetic population generation from
census tract data into agent profiling and spatial al-
location, (2) developing scenarios of building damage
due to earthquakes and tsunamis, (3) building debris
scattering estimation and road network disruption,
(4) logistics regarding post-disaster relief distribution,
(5) the labor market in post-disaster urban dynamics,
and (6) household insurance behavior as a reflection of
urban resilience.

Keywords: urban simulation, damage assessment, so-
cioeconomic impact, disaster management, disaster sim-
ulation

1. Background

The present report reviews an integrated model devel-
oped as part of collaborative research between Japan and
Israel. The final goal of this project is to generate a proto-

type of a Dynamic Integrated Model for Disaster Manage-
ment and Socioeconomic Analysis (DIM2SEA). We are
developing this model to provide tools for evaluating mul-
tiple disaster scenarios considering the impact of physical
and socioeconomic effects on urban resilience. In this re-
port, the path taken to accomplish this goal is presented.

Disasters can be large and complex incidents that are
inherently challenging to manage [1], causing physical
destruction to the built environment (direct losses). Con-
sequently, this disrupts the economic activity, produc-
tion, and consumption of businesses and people (indi-
rect losses). Estimating the possible impacts of future
or current disaster events is one of the main tasks of dis-
aster prevention practitioners. To accomplish this, these
practitioners require tools to effectively comprehend post-
disaster conditions. However, among the numerous tools
available to conduct such estimations or evaluations, most
have focused on assessing individually either physical
damage or economic losses [2–4]. In recent years, there
has been an interest in fusing damage and loss models
from a multidisciplinary perspective [5].

In addition, a disaster event provides evidence of the
vulnerabilities of a community, society, or built-up area.
Furthermore, society evolves (lives) in time because of
dynamics in its socioeconomics, reaching a relative equi-
librium that emerges from the interaction of various ac-
tors and their activities. Therefore, when a disaster strikes
a society, it has a destructive effect not only on buildings
and infrastructure, but also on people and their economic
activities. It is necessary to quantify and grasp these ef-
fects as quickly as possible to understand the situation,
needs and alternatives available to respond and cope with
the impact. Thus, methods to rapidly quantify such phys-
ical damage are important in the disaster response stage.
On the other hand, societies consist of humans who often
organize themselves around economic activities such as
working or commuting. Such organizations and relation-
ships with the labor market become a sort of respiratory
system for the economy of a society living in the urban
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environment. Consequently, when a disaster triggers a
shock, a decline in work productivity is observed, after
which the system no longer breathes normally.

The equilibrium of physical components and socioe-
conomic activities contributes to growth and develop-
ment; however, a lack of urban resilience can compro-
mise a community’s growth rates and aspirations. Ur-
ban resilience is a timely issue. The ravages of the In-
dian Ocean Tsunami (2004), Hurricane Katrina in New
Orleans (2005), Haiti and Christchurch earthquakes in
2010 and 2011, 2010 Maule earthquake in Chile, Tokohu
earthquake and tsunami (2011) and Superstorm Sandy
(2012) among others have brought home the urban im-
pacts of natural disasters and differential abilities of cities
to mitigate them. The Sendai Framework for Disaster
Risk Reduction 2015–2030 (SFDRR) adopted at the re-
cent Third World Conference on Disaster Risk Reduction
in March 2015 notes that “it is urgent and critical to an-
ticipate, plan for, and reduce disaster risk to effectively
protect people and socioeconomic assets, amongst oth-
ers, to strengthen community resilience.” The notion of
resilience is prioritized in the SFDRR. However, as with
many metaphors, its precise meaning is ambiguous and
not seamlessly transferable to the urban context. The con-
cept of “resilience” is rooted in the biological and ecolog-
ical sciences [6, 7], and therefore, is often discussed in the
context of particular physical shocks, such as ecological
degradation, climatic change and natural disasters. Al-
though the role of shocks in ecosystems may be concep-
tually analogous to those on cities, such comparisons are
inevitably limited. The urban system responds to a set of
forces very different from those that fashion the natural
environment.

In the DIM2SEA Project, we aim to address two di-
mensions, namely, physical and socioeconomic impacts.
The project focuses on enhancing disaster response and
socioeconomic resilience. Specifically, we are interested
in the differential socioeconomic impacts of disasters
on subsectors of the population and long-term system-
wide effects on the urban environment, an issue that
has received scant attention in the past. In this respect,
DIM2SEA fills an important gap in both technology de-
velopment and disaster management practice. The mod-
eling platform developed in the project combines short-
term damage and casualty assessment, evacuation routing,
and transportation disruption, along with the longer-term
assessment of urban dynamics post-disaster. While the
former focuses on damage, evacuation, and casualty es-
timation, the latter includes a simulation of longer-term
structural urban changes including land use, fixed capital
stock, and labor market change. These recursively impact
the urban social and demographic composition, thereby
mediating urban resilience. Combining these assessments
and the synergic consideration of the effects and relation-
ships between them can provide significant insights into
the complexity of disasters and urban resilience.

2. Purpose and Overview

In the project, we aim to develop a prototype of
DIM2SEA that will provide disaster officials, stakehold-
ers, urban engineers, and planners with an analytic tool
for mitigating catastrophic events. Fig. 1 summarizes the
components and their relationships needed to produce a
comprehensive disaster management tool.

The DIM2SEA Project acts as a “what-if” scenario
analysis tool filling the gap between technology devel-
opment and disaster management practice. In addition,
it provides a quantitative measure for urban resiliency
through simulation. Scholars have proposed several di-
mensions by which to measure resilience [8–10]. How-
ever, these dimensions provide indexes that characterize
the vulnerability of the urban environment and commu-
nity preparation at a point in time (pre-disaster). In con-
trast, in the DIM2SEA Project, we propose a temporal
measure of resilience. Through a simulation, disaster
damage impacts the socioeconomic equilibrium, and the
time necessary to achieve new equilibrium in the system
is considered a measure of resiliency. Furthermore, by
comparing multiple damage and response scenarios, the
effects on urban resilience can be measured and evalu-
ated.

First, the spatial database from the population and so-
cioeconomic census is disaggregated at the individual
level (see Section 3.1). The disaggregated population is
spatially allocated in the building inventory following an
iterative fitting method. Next, individuals are grouped
into households to keep the generated synthetic data as
similar as possible to the real census data. When earth-
quake and tsunami events occur, the strong ground mo-
tion is obtained from various possible sources (e.g., data
recorded by seismic stations, earthquake simulation re-
sults), while tsunami inundation estimations are gathered
from simulation outputs (see Section 3.2). When the sit-
uation merits it (i.e., when warnings are issued, strong
ground motion is severely felt or when an individual’s risk
perception is high), citizens trigger their evacuation. We
model evacuation behavior with the outcome of building
and road disruption estimations to obtain human loss esti-
mations and clarify the urban post-disaster situation (see
Section 3.2). Once the shake or inundation has stopped,
the remaining agents are expected to be in shelters or safe
areas. The spatial location and amount of population at
each shelter will determine the level of demand for dis-
aster relief. Moreover, if roads have been disrupted, then
an optimum logistic strategy to satisfy these demands is
needed. Here, we use multiobjective optimization model-
ing to assess the number and locations of warehouses and
tents needed for effective disaster relief (see Section 3.3).
This hazard impact situation is employed as the initial
condition for the post-disaster relief simulation and land-
use and population dynamic estimation.

For the disaster relief simulation, after the evacuation is
completed, survivors’s whereabouts are known and shel-
ter needs are assumed corresponding to the number of
evacuees obtained in the simulation. The best alternatives
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Fig. 1. Summary of tasks and outcomes conducted as part of the DIM2SEA Project.

for disaster relief response under such conditions are cal-
culated with a time frame for evacuee attendance and mi-
gration. The dynamics of evacuees and the population in
general are decided based on socioeconomic factors and
the extent of the damage in the area. Thus, urban con-
ditions and the socioeconomic profiles of households are
combined into an agent-based model that produces syn-
thetic big data and an overall view of dynamics in the
simulated area. The time taken for the model’s dynam-
ics to reach equilibrium is the unit scale used to measure
urban resilience. The faster an urban space adapts, the
higher the resilience will be. As mentioned, the phys-
ical damage estimation is incorporated within the com-
ponents of DIM2SEA; thus, building stock and property
damage can be quantified. Moreover, physical destruction
can also indirectly affect the labor market, which is repre-
sented here by wage levels, workforce participation, and
job occupancy [11] (see Section 3.4).

3. Components of the DIM2SEA System

A data disaggregation algorithm was developed to build
individual socioeconomic profiles from census tract data.
The allocation of the census data into households and dis-
crete individuals enables a deep analysis of urban and so-
cioeconomic dynamics. The Israeli group developed a
dedicated algorithm for data disaggregation and the gen-
eration of synthetic spatial microdata [4]. The approach
calls on combining census tract-level data with GIS build-
ing layers to generate synthetic spatial microdata. The
resultant synthetic database is detailed and accurate and
represents the spatial distribution of buildings, dwelling
units, households and inhabitants in the urban area.

Hazards are simulated based on their generation, propa-
gation, and impact on the urban environment using physi-
cal and geospatial models to estimate the damage to build-
ings. For instance, the QuiQuake1 system provides strong
ground motion maps of peak ground velocities soon after
an event. Such information comprises a valuable database
of earthquake scenarios that can be combined with seis-

1. https://gbank.gsj.jp/QuiQuake/index.en.html
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mic fragility curves developed elsewhere [12] to estimate
the level of damage to buildings in the area. Similarly,
tsunami numerical simulations combined with tsunami
fragility curves [13] are also used to estimate the level of
damage due to tsunamis. In addition, agent-based mod-
els are employed to estimate human losses. A model to
estimate casualties during a tsunami [14] is used to test
human behavior in the case of an evacuation and combine
the tsunami inundation output to observe the process of
evacuation in a realistic and dynamic fashion. The next
component addresses the issue of a relief allocation strat-
egy. As is well known, after a disaster, there is limited in-
formation about the areas affected and a high need for re-
lief supplies. An optimal strategy aims to respond quickly
and use relief items with a minimum amount of wastage
and shortage time. An agent-based model was devel-
oped [15] to address this challenge and integrated into
the DIM2SEA model. Finally, land-use and population
dynamics are modeled following agent decisions based
on damage conditions and socioeconomic traits. For in-
stance, households with larger incomes and less damage
to their property or workplaces may recover faster than
families with a lower income and severe damage to their
property [16]. The processes of decisions regarding mi-
gration and adaptation will be discussed in the future in
the project and reported later. The outcome of the simula-
tion scenarios will provide a large amount of data for mul-
tiple levels of the urban environment. This information is
considered synthetic big data that must be processed for
scenario analysis. The information expected at this stage
is individual agents’ position tracks and disaster response
schedules, household composition, individual economic
recovery and overall dynamic equilibrium. The methods
to process this information are still under study and will
be reported in the future. The geospatial information and
analysis of the synthetic big data produced during the sce-
nario modeling are presented through a web-based envi-
ronment that facilitates accessibility, management and un-
derstandability. A limited interactive environment is con-
structed to share the scenarios and outcomes of the im-
pact, recovery and adaptation of target areas.

3.1. Data Disaggregation and Agent Profiling
The first component in the DIM2SEA aims to generate

synthetic data at a microscale level from the population
census tract and socioeconomic census. In general, the
urban population is represented in aggregated quantities
in the area of residence. The spatial level of accuracy and
resolution of this information varies between countries.
This section summarizes the procedure followed to gen-
erate the synthetic population from a grid-based format of
aggregated data provided by the Statistics Bureau of Japan
based on the Census of 2010 in Sendai City, hereafter the
Census (Fig. 2). The main target at this stage is to build
a set of agents, where each agent will represent a citizen.
Each agent must reflect certain features in the aggregated
data such as age, gender, and economic profile. Further-
more, subsets of agents representing households should

Fig. 2. Population of Sendai city, Japan.

Fig. 3. Example of a fourth-order mesh composed of 25
first-order meshes. The number shown in each cell denotes
an estimate of the number of citizens living inside.

be defined. Thus, the group of agents must be consistent
with the aggregated values provided by the Census, also
in terms of population counts and households.

Figure 2 shows the aggregate population within a uni-
form mesh format. Each mesh is defined by two codes:
first- and fourth-order mesh codes. Fig. 3 shows an exam-
ple of a fourth-order mesh, whose dimensions are 548 m
in the horizontal direction and 460 m in the vertical direc-
tion. Each fourth-order mesh is subdivided into 25 first-
order meshes. Fig. 3 also shows the number of citizens in
each first-order mesh provided by the Census. It has been
noted that only the total number of people in a fourth-
order mesh is an integer value. Thus, it was decided to
use the aggregated value of the fourth-order meshes as
ancillary data. Besides the number of citizens, the Statis-
tics Bureau of Japan provides detailed information about
the population. For instance, Table 1 depicts the popula-
tion according to the range of age and gender, and Table 2
shows the number of households defined by the number of
its members. These detailed aggregated values simplify
the challenge of creating highly accurate agents consis-
tent with real information. To illustrate, the procedure to
create agents with a certain age, gender and the household
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Table 1. Population by gender and by age in the fourth-order mesh shown in Fig. 3.

Range Total Male Female Range Total Male Female
0–4 111 48 63 45–49 175 83 92
5–9 114 53 61 50–54 161 76 85

10–14 104 52 52 55–59 191 80 111
15–19 179 76 103 60–64 191 92 99
20–24 301 115 186 65–69 179 79 100
25–29 320 143 177 70–74 126 64 62
30–34 313 141 172 75–79 117 43 74
35–39 263 134 129 80–84 87 33 54
40-44 233 113 120 85– 94 28 66

Table 2. Number of households of different sizes in the
fourth-order mesh shown in Fig. 3.

Household size Number
1 person 1102
2 people 388
3 people 239
4 people 122
5 people 36
6 people 9
>6 people 4

to which they belong is reported in detail here. Moreover,
the procedure can be easily extended to allocate more at-
tributes provided they come from the same resolution.

The problem faced here was clearly defined and solved
in 1940 [17]. The census data are arranged as a two-
dimensional problem and highlighted in Table 3. Two ab-
stract indexes were defined to be assigned to each agent.
The row index, from 0 to 35, defines whether the agent is
male or female with an age within a certain range. The
column index, from 0 to 6, defines the type of household
to which the agent belongs. The type of household is de-
fined based on the number of its members (see Table 2).
Therefore, the sample universe can be represented by a
matrix N of size 36× 7, where for example, the element
N1,1 denotes the number of female agents whose ages are
between 0 and 4 years old (see Table 3). The informa-
tion from the Census provides only the total marginals
for both the row index ri = ∑ j Ni, j and the column index
c j = ∑i Ni, j; however, the elements of N are unknown and
must be estimated. With this purpose in mind, the fol-
lowing procedure is performed. First, the total number of
agents is created with age, gender and type of household
assigned randomly with a uniform distribution. Then,
the matrix N is constructed and subsequently adjusted for
consistency with the total marginals ri and c j. The el-
ements of N are adjusted using the following recursive
process:

Nk+1
i, j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Nk
i, j

ri

∑
m

Nk
i,m

, if k even

Nk
i, j

c j

∑
m

Nk
m, j

, if k odd
. . . . (1)

The iterations are computed until convergence is ob-
served. Fig. 4 shows the total marginals before and af-
ter the adjustment. Once the matrix N is adjusted, up-
dating the agent information and rearranging the house-
holds is straightforward. Finally, the agents are geolo-
cated to buildings. A simple criterion was selected to al-
locate agents to buildings. The number of households in
a building is proportional to the building volume. Fig. 5
illustrates the agents according to their age, gender, and
type of household to which they belong. This process was
applied to every fourth-order mesh located in Sendai city,
Japan. A similar approach in the target area in Israel is
described in [4].

3.2. Short-Term Damage Assessment
A series of sub-models and methodologies were de-

veloped in the Project. We call them short-term mod-
els because they are limited to the immediate aftermath
of a hazard event. They consist of building damage esti-
mation methodologies using hazard parameters combined
with fragility functions for damage estimation. In ad-
dition, remote sensing technology was used to develop
quick methods to grasp the damage in remote areas. Pro-
vided the necessary data are available, these methods are
optional tools in the DIM2SEA to assess damage in the
aftermath of real earthquakes or tsunamis. For the case
of the DIM2SEA model, a method to generate synthetic
building damage scenarios for training and scenario anal-
ysis was developed. In this section, we summarize recent
developments in this area; however, the details of each can
be found in the respective referenced literature.

3.2.1. Building and Road Damage
Over time, urban regions have greatly increased, and

are thus at risk of earthquakes or tsunamis. In this context,
building damage models are developed to estimate losses
from earthquakes, tsunamis or other hazards. Tradition-
ally, building damage estimation was performed using an
intensity scale because of the lack of strong-motion in-
struments [18]. [19] provided one of the first estimations
of earthquake loss ratios for different types of buildings,
while [20] conducted a regional study of the San Fran-
cisco Bay Area and produced an estimation of losses from
a major earthquake. On the other hand, [21] conducted
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Table 3. Arrangement of the matrix of frequencies N and marginal totals ri and c j based on census data.

HH1 HH2 HH3 HH4 HH5 HH6 HH7
Age Index 0 1 2 3 4 5 6 Total (ri)

Male 0–4 0 ? ? ? ? ? ? ? 48
Female 0–4 1 ? ? ? ? ? ? ? 63
Male 5–9 2 ? ? ? ? ? ? ? 53

Female 5–9 3 ? ? ? ? ? ? ? 61
... ... ... ... ... ... ... ... ... ... ...

Female 80–84 33 ? ? ? ? ? ? ? 54
Male 85–89 34 ? ? ? ? ? ? ? 28

Female 85–89 35 ? ? ? ? ? ? ? 66
Total (c j) 1102 776 717 488 180 54 37

Fig. 4. Total marginals ri (left) and c j (right) before and after the adjustment.

Fig. 5. Agents according to age (upper-left), gender (upper-right), and type of household (bottom).
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a study following probabilistic perspectives, focusing on
dwellings located in the San Francisco Bay Area in the
US, which were classified into 24 classes. Considering the
12 intensities from the Modified Mercalli Intensity Scale,
a 24× 12 matrix was produced. Each element of the ma-
trix contains a damage ratio and damage factor, which are
the cost of repair as a percentage of replacement cost and
percentage of buildings that experienced this damage ratio
respectively. In addition, [22] introduced the concept of a
damage probability matrix (DPM) and applied it to build-
ings of more than five stories. Later, the Applied Technol-
ogy Council (ATC) presented detailed information about
DPMs for 78 classes of structures [23]. Throughout the
years, the number of studies related to earthquake loss es-
timation has increased considerably [24, 25], and a need
for standard procedures emerged. [26] pointed out that
the common methods for assessing physical vulnerabil-
ity – vulnerability matrices, vulnerability curves, fragility
curves and vulnerability indicators – are used in a con-
flicting way rather than in combination. Therefore, the
HAZUS [27] method for loss estimation was developed
to standardize assessments [28, 29]. On the other hand,
a detailed evaluation of tsunami-induced damage con-
sidering the effects of hydrostatic forces and hydrody-
namic pressures during tsunami inundation requires spe-
cific information about buildings’ structural and design
characteristics [30], which in most cases, is unknown.
To address this issue, several authors have studied the
fragility of existing buildings by constructing empirical
tsunami fragility functions that present the relationship of
damage probability in terms of tsunami inundation fea-
tures such as flow depth and current velocity [31–34].
Tsunami fragility functions have been developed follow-
ing major tsunami events such as after the 2004 Indian
Ocean tsunami [13, 35, 36], 2009 Samoa Earthquake and
Tsunami [37, 38], 2010 Chilean Tsunami [32], and 2011
Tohoku Tsunami [39–41]. [42] used fragility functions
developed after the 2011 Tohoku Tsunami to estimate
building damage and economic loss at the community
level. They proposed a straightforward methodology us-
ing the maximum simulated tsunami inundation depth as
an input parameter for the tsunami fragility function. This
method assumes that the damage probability of a sin-
gle building is characterized by the probability of dam-
age given by the fragility function at its explanatory in-
put variable, which in this case is the modeled inunda-
tion depth. On the other hand, [43] proposed a practical
methodology to evaluate different levels of building dam-
age using tsunami fragility functions based on two earth-
quake scenarios. This method considers that the damage
ratio of a group of buildings within a target inundation
interval is provided by the damage probability that the
fragility function gives at the representative explanatory
variable. In this case, the explanatory input variable is
characterized by the mean value of the target inundation
interval.

In our integrated model, we use the method proposed
by [43] to estimate the building damage due to tsunami
inundation. To estimate the damage due to an earthquake,

a combination of engineering demand parameters (EDPs)
such as the peak ground velocity and fragility curves is
applied. A preliminary result of this assessment method
was applied to damage caused by the 2016 Kumamoto
earthquake [18, 44].

The estimation of damage level is based on the empiri-
cal fragility functions proposed by [12]. A fragility func-
tion provides the likelihood that an element experiences or
exceeds a certain level of damage under a given EDP [45].

Fragility curves represent the relationship between a
ground intensity measure (e.g., PGA, PGV, or MMI) and
the likelihood that a structure experiences or exceeds a
certain level of damage. Fragility curves are mostly rep-
resented as a normal or lognormal cumulative distribution
function, such as:

Fd(x) = P[D ≥ d|X = x] dε{1,2, . . . ,ND}
= Φ

(
ln(x/θd)

βd

)

. . . . . . . . . . . . . . (2)

where Fd(x) is the fragility function for damage state at d
evaluated at x. P[A|B] is the probability that A is true given
that B is true. D is the uncertain damage state and any
specific value of it is represented by d. ND is the number
of possible damage states. The ground intensity parame-
ter is quantified by the variable X , and any specific value
of it is represented by a lower case x. Φ(s) is the stan-
dard normal cumulative distribution function evaluated at
βd and θd , which are the median and logarithmic stan-
dard deviation respectively. The lognormal distribution is
used, because it fits a variety of damage data well for ei-
ther structural or nonstructural components. In addition,
the lognormal distribution has zero probability density at
values less than or equal to zero EDP, and it can be de-
fined by the median and standard deviation [45]. A statis-
tical approach is used for building the damage function,
because of the source of variabilities. Ground motions
with the same intensity produce a different demand on
the same structure. Furthermore, buildings with the same
structural system and built according to the same design
code have different capacities. Thus, to use a fragility
function for a given structure, a calibration of Eq. (2) is
required. In other words, we need to estimate θd and βd .
Such estimations are based on observed data, which can
be based on field surveys or analytical structural analysis.
Two common methods are used to estimate parameters
from the observed data: (i) the method of moments and
(ii) the method of maximum likelihood. However, as clar-
ified by [46], independent of the procedure, the parameter
should be unbiased (i.e., the estimated parameters do not
overestimate or underestimate the true parameter values),
efficient (i.e., with small variance), and consistent (i.e.,
the estimated parameters converge to the true values when
the number of observed data approaches infinity). A set
of fragility functions for the same type of buildings with
the same construction period can be used to delimit the
region of each damage state. Fig. 6 depicts the fragility
curves for wooden buildings constructed during the pe-
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Fig. 6. Fragility functions of wood-frame (left) and rein-
forced concrete (right) for moderate (green line) and heavy
damage (blue line).

riod 1972–81. The set of fragility functions delimits the
region of each damage state. For instance, in Fig. 6, a
building with a demand of 100 cm/s as PGV has a proba-
bility of 0.18, 0.45, and 0.37 for slight/no damage, moder-
ate, and heavy damage, respectively. Recall that when the
demand (PGV) increases, the probability of heavy dam-
age increases as well, while the probability of slight/no
damage decreases. The probability of each damage state
from the set of fragility functions is expressed as follows:

P[D = d|X = x] = 1−F1(x) d = 0
= Fd(x)−Fd+1(x) 1 ≤ d ≤ N
= Fd(x) d = N

. . . . . . . . . . (3)

It is expected that when the demand (PGV) increases,
the probability of heavy damage increases, while the
probability of slight/no damage decreases. The method-
ology applied here follows this principle and is based on
an aleatory simulation in which the damage of each build-
ing is estimated from a random selection of three possible
outcomes (slight/no damage, moderate, or heavy). The
random selection is performed using probabilities associ-
ated with each option, which is the probability of damage
calculated from the fragility curves. Furthermore, the de-
mand parameter (PGV) is provided by the QuiQuake ser-
vice,2 which calculates the spatial distribution based on
a kriging interpolation method considering an attenuation
law of the strong-motion networks provided by the Na-
tional Research Institute for Earth Science and Disaster
Prevention (NIED).

The scheme of this approach is shown in Fig. 7.
To estimate the building damage due to a tsunami, we

applied the method proposed by Adriano et al. [43]. Here,
tsunami inundation simulations are coupled with tsunami
fragility functions to observe the probable timing of build-
ing destruction and spatiality of the tsunami impact on an
urban area. For details of the method and a discussion of
its accuracy, see [44].

2. https://gbank.gsj.jp/QuiQuake/index.en.html

Fig. 7. Scheme of the method to estimate building damage
due to an earthquake.

3.2.2. Human Loss and Survival Estimation

To estimate human losses and the survivability of evac-
uees in the case of an earthquake and tsunami we applied
a simplified evacuation model tailored for large-scale ur-
ban areas. The model uses a reinforcement learning al-
gorithm applied to the road network to calculate the best
route at each node that leads to the nearest shelter or safe
area. The resulting matrix of nodes and corresponding
best strategy is used when simulating the movement of
the population. Remember that the Census data have al-
ready been disaggregated into a micro representation of
people who become agents in the agent-based model de-
veloped here. Agent-based modeling (ABM) is suitable
for simulating an evacuation, because of its capability to
represent evolving and changing decisions and the phys-
ical features of the environment. To estimate casualties
and evacuee movement during a disaster, previous stud-
ies used agent-based models in relatively small areas [14],
combining spatial urban information, evacuee preferences
obtained from questionnaires and the tsunami hydrody-
namic features provided by tsunami inundation modeling
(for details see [47]). Within the reinforcement learning
framework, the road network represents the environment
in which the agents interact, and a state denotes the infor-
mation an agent perceives from the environment when it
is located at a certain node of the network. In a simple
model, a state may be composed of the node in which the
agent is located and the links available to move to another
node. A more realistic model might include pedestrian
density within the links, damaged links, and so on. When
an agent arrives at a node, he/she has a set of options to
continue moving: the links, which are called actions. The
effect of every chosen action is quantified by a reward. A
reward is assigned to an agent based on whether it arrived
or not at an evacuation node. An agent chooses an ac-
tion following a given policy. In reinforcement learning,
the main target is to find the best policy that maximizes
the long-term reward (i.e., the accumulated reward from
the beginning to the end of the simulation), which is inti-
mately associated with the best evacuation route.
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Fig. 8. Schematics of the relief support optimization model
(adapted from [48]).

3.3. Disaster Relief and Logistics
The DIM2SEA model also presents two options for

analysis: (i) optimization of warehouse allocation and
(ii) calculation of disaster relief demand variation based
on the number of evacuees in shelters. The first assess-
ment uses a multiobjective network to maximize the area
covered and minimize the distribution cost [48]. The lat-
ter calculates the day-by-day or week-by-week demand at
shelters and strategy to attend and reduce the demand for
the next period.

In the DIM2SEA Project, a model of the multiobjec-
tive network to select warehouse locations has been pro-
posed [48], such that the maximum area is covered and
minimum distribution cost incurred. [48] explored the re-
lation between preparedness and response stages of the
disaster management cycle. Relief demand is observed af-
ter a disaster; thus, the properties of relief demand should
be studied. Therefore, the main factors of relief demand
are described. The proposed model utilizes the concept of
a hub-and-spoke network, because of the disruption of the
transportation network and fragility of local transporta-
tion after a disaster. The spoke-hub distribution paradigm
describes a series of spokes (i.e., routes) that connects out-
lying (demand) points (i.e., regional or local warehouses
or shelters) to a central hub (i.e., central or regional ware-
house) (Fig. 8). In addition, two performance measures
for setting up a facilities network were proposed and used
to determine the effectiveness of this network.

On the other hand, a model that can be used for plan-
ning disaster relief according to a desired schedule and
contraction or expansion of capacities and resources is
also developed. In addition, a fork of this model calcu-
lates the consecutive demand at shelters after an optimal
strategy is applied based on current demand conditions.
The details of this model are still being verified and will
be shared by the end of the project.

3.4. Longer-Term Dynamics
Long-term models correspond to the evaluation of ur-

ban and socioeconomic dynamics in the aftermath of a

disaster. For instance, work and commuting forms the
daily basis of most citizens’ activities. Thus, the labor
market is a central feature of the urban environment and
a significant shock (e.g., earthquake or other hazard) pro-
duces a market disequilibrium that contributes to delays in
post-disaster recovery. The DIM2SEA project studied the
labor market and modeling of its dynamics after a disas-
ter [11] to assess long-term urban resilience from a market
(re)equilibrium perspective. On the other hand, property
insurance has been studied as an important ingredient of
household resilience [49]. This is because much of house-
hold wealth is bound in property. Therefore, the ability to
recover from property loss or damage is determined by
household preferences for insurance. Looking at behav-
ior in this market also provides the “missing link” that
ties the economic and social conceptions of resilience. In
this latter line of research, DIM2SEA uses demand for
household insurance coverage as an under-recognized in-
dicator and observed metric of revealed behavior. A sim-
ple theoretical model depicts how household preference
for insurance can ultimately contribute to community re-
silience. Empirical evidence regarding the demand for in-
surance suggests that personal attributes such as age, in-
come (wealth) and education affect household insurance
behavior. In addition, physical and place-specific features
such as location and topography must also be included.
The expected change in wealth (loss) after the hazard de-
termines the minimum expected level of coverage in a
given location. Community resilience is defined as the
sum of the marginal changes in wealth with respect to a
hazard in relation to some minimum pre-defined level of
resilience. The empirical strategy used in DIM2SEA to
test this model considers aggregate resilience using a two-
stage demand-side analysis. In the first stage, the deter-
minants of demand for household insurance as a function
of population socioeconomic attributes and characteristics
of the properties covered have been estimated. As this
is invariably jointly determined with personal resilience,
as households with more coverage are deemed more re-
silient, in the second stage, the relative contribution of in-
surance coverage to resilience was assessed. Practicaly,
this involves estimating a two-equation system consisting
of an insurance share (IS) model and a personal resilience
(PR) model as follows:

ISi = α + γPRi +β Xi +λ Zi +δ Di + εi

PRi = ω +θ ISi +β Xi +λ Zi +δ Di +μi

. . . . . . . . . . . . . . . (4)

where IS and PR are endogenous variables for the i-th
Statistical Area (SA), X is a vector of SA-average prop-
erty attributes (price, ownership, age) and Z is a vector of
average SA personal characteristics (earnings inequality,
share of the highly educated, and share of the elderly pop-
ulation), D is the distance to a hazard, ε and μ are error
terms, and PR is an index. The system is estimated us-
ing ordinary least squares (OLS), two-stage least squares
(2SLS), and semi-parametric least squares (SLS) estima-
tions. To identify the insurance model, we used three
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exogenous predictors of resilience that are causally unre-
lated to insurance: share of the Jewish population, house
ownership and years of schooling. Instruments used that
identify the resilience model and function as sources of
exogenous variation in insurance are earnings inequality
and share of the elderly population. The empirical re-
sults indicate that at the national level, instrumenting to
address potential endogeneity in the relationship between
insurance coverage and resilience can make a difference.
At the local level, this claim is more difficult to sustain.
The findings also show that personal and environmental
(place-based) resilience are different sides of the same
coin. In addition, the findings indicate that insurance cov-
erage is an independent indicator of resilience different
from that of classic social (personal) and economic (prop-
erty or place-based) attributes. Further details about this
issue can be found in [49].

However, these empirical findings are limited in terms
of scope and aggregation. They only refer to spatial ag-
gregates (i.e., statistical areas) and do not really address
demand for insurance coverage. Rather, they focus on av-
erage consumer behavior, i.e., households that have cho-
sen to purchase insurance coverage. As resilience re-
lates to individuals and households, not statistical aver-
ages, more meaningful implementation of this component
of the research program must use microdata. Currently,
work is underway using microeconomic statistical mod-
eling to understand the determinants of insurance expen-
diture and its relationship with the existence of natural
hazards in the study area.

3.4.1. Socioeconomic Analysis: The Labor Market
A post-disaster ABM of the labor market was devel-

oped in the project [11] to simulate the economic behav-
ior of individuals and firms. The current model (Fig. 9)
simulates disaster outcomes relating to stock and flow at-
tributes of the urban environment. Changes in land use
(residential and nonresidential) are considered as stock at-
tributes, while flow attributes are related to labor market
conditions. Continuing with the DIM2SEA model flow,
after the hazards and damage are estimated, together with
population dynamics and disaster relief, capital stocks
rapidly decreases and local demographics are altered, pro-
ducing social changes. Specifically, the labor market is af-
fected by a downward effect on wages. Here, we integrate
with previously explained short-term models by using the
damage estimation calculated at that stage. Physical dam-
age indirectly affects the labor market.

The model described in [11] goes beyond evacuation
and emergency responses. As mentioned, it moves toward
a long-term view of urban recovery. Several subsystems
are represented in the model, such as the labor market,
housing market, and the various activities or behaviors of
agents in the city.

In DIM2SEA agent-based simulations, the labor mar-
ket is conceived as comprising tradable and perfectly mo-
bile labor and a spatially rigid product market. This struc-
ture is chosen purely for agent-based simulation tractabil-

Fig. 9. Framework of the ABM of the labor market (adapted
from [11]).

ity. In this world, jobs represent the stock or labor de-
mand side and wage levels firm reactions to local mar-
ket conditions. Agents supply labor and are free to move
between jobs, including those located outside the study
area. Given the small size of the study area, we assume
any agent seeking to commute will manage to find a job.
The top-down submodel in this context deals with setting
wages attached to unoccupied jobs. We introduce a pa-
rameter termed the local clearing wage, which is akin to
the level that wage firms would offer under a closed equi-
librium setting. This parameter is based on an intratempo-
ral linear approximation of the marginal product of labor
derived from a Cobb-Douglas production Eq. (5):

log
(

Wt

Wt−1

)
= α log

(
Kt

Kt−1

)
+(β −1) log

(
Lt

Lt−1

)

Wt =Wt−1.
Kα

t

Kα
t .

(
Ld,t

Ld,t−1

)1−β

. . . . . . . . . . . . . . . . . (5)

where Wt represents clearing wage levels, Kt indicates
capital stock levels, Ld,t represents the demand for labor
at time t, and β and α are Cobb Douglas parameters. The
floor-space volume represents capital stock, and the share
of occupied jobs represents the demand for labor from all
jobs. Changes to the value of this latter parameter trickle
down to the level of the individual unoccupied job (the
model assumes that firms are unable to adjust the wages
of occupied jobs), whose value shifts with the change in
clearance wage levels. Individual agents react to these
changing wage levels and their actions form the supply
side. Based on these changes, agents may decide to join
the workforce, and the larger the increase in the clearing
wage, the higher the number of agents attracted. Unem-
ployed agents constantly look for an open position that
satisfies their requirements. We compute the attractive-
ness of a specific workplace as a function of the wage
offered and the commuting distance required from the
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agent:

Si, j = α.
d(hi,b j)

max{d(k,b j) : k ∈ B}
+(1−α).

w j −min(wk : ∀k ∈ J)
max(wk : k ∈ J)−minwk : k ∈ J

. . . . . . . . . . . . . . . . . (6)

where Si, j is the attractiveness score of an unoccupied job
j for agent i, α is used to weight the different components,
hi is agent i’s residential location, b j is job j’s location,
w j is the wage offered by job j, d(x,y) is the network dis-
tance between locations x and y, B is the entire buildings
set, and J is the set of unoccupied jobs.

This specific formulation is driven by the assumption
that judgments are relative and agents substitute wages
with commuting distance. In this case, agents are will-
ing to accept a cut in wages if this allows them to reduce
their commute. Agents’ preference scores are computed
according to their previous workplace characteristics or
randomly if they were never employed. Agents are not as-
sumed to have perfect information, and their capabilities
are constrained to considering only seven unoccupied jobs
at each iteration. When failing to find a job, an agent may
decide to commute out of the area or leave the labor force.
This decision is random and becomes more probable the
longer the agent’s job search lasts. If an agent decides
to commute, its income is defined by the expected wage
from the previous employment or randomly. Finding a
position within the study area alters not only the agent’s
earnings but also those of its household.

To illustrate the simulation capabilities of the
DIM2SEA agent-based model, we consider labor mar-
ket outcomes of a hypothetical earthquake in the real-
world environment of the Jerusalem city center. This is
a mixed-land use area measuring 1.45 km2 and housing
717 residential buildings (243,000 m2), 179 public-use
buildings (420,000 m2), and 119 commercial structures
(505,000 m2). It also includes two major commercial lo-
cations, namely the city center and an enclosed market.
We ran the model 25 times with no shock and 25 times
with a simulated earthquake shock that destroys capital
stock (land use change). The shock is located randomly
in space (to avoid spatially biased results) and occurs at
day 60. This run-in period, where land-use changes are
allowed only after the first 30 days, was selected so that
the system can reorganize according to the simulation dy-
namics before the shock. The simulations run for three
years after the shock. We present aggregate results for key
labor market parameters, using indicators such as changes
in population over time, average wages, job occupancy
rates and labor force participation and floor-space vol-
ume by use. For example, Fig. 10 demonstrates the dy-
namics of the change in population, labor force participa-
tion and local employment in a scenario due to the sim-
ulated shock. As agents (workers) are mobile, they are
more flexible and respond more quickly to the new sit-
uation post-disaster. In this new environment, a surplus
of workers emerges consequent to falling demand and the

Fig. 10. Dynamics of changes in the population, labor force
participation and local employment by scenario.

declining attractiveness of available opportunities. How-
ever, this situation is unsustainable. Unemployed workers
(agents) are forced to find other work solutions by either
commuting or opting out of the workforce. This process
decreases participation and local employment rates at a
much faster rate than in the no-shock scenario, until sta-
bilizing at a low-level stable equilibrium (Fig. 10). This
result is accentuated by a population growth experienced
due to an increase in the supply of housing, following a
decrease in the size of the non-residential stock (Fig. 10).
Since some migrants start as commuters, local employ-
ment rates suffer more than workforce participation and
experience a much sharper decline. These dynamics por-
tray not only land use shifts toward residential uses but
also a local workforce that becomes more dominated by
commuters. The city center area experiences a suburban-
ization trend, which reduces the total production in the
region. This situation is not due to declining worker pro-
ductivity, but to a change in the mixture of products of-
fered in the area. The replacement of productive firms by
residents who choose to produce in other regions ampli-
fies this trend, reducing local productivity.

4. Visualization

Several models were developed in the Python or
MATLAB R© programming language and environments
with output formats suitable for export to and represen-
tation on a GIS platform. Thus, for visualization, we
combined several products of the possible spatial repre-
sentation into a GIS interactive environment on a dedi-
cated GIS server. At the time of this manuscript report,
the GIS service is not public since its development is on-
going until the end of the project. However, a future link
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Fig. 11. Screenshot of ArcGIS Online environment for
DIM2SEA model output visualization.

to this service will be posted on our project webpage.3 An
example visualization of damage scenarios is presented in
Fig. 11.

5. Conclusions

In this development report, we presented and described
the DIM2SEA model. DIM2SEA stands for Dynamic In-
tegrated Model for Disaster Management and Socioeco-
nomic Analysis. The purpose of this tool is to aid disaster
stakeholders, responders and decision makers in experi-
menting with various urban disaster and recovery scenar-
ios. We have concluded our development of the short-
term damage estimation tools and population disaggrega-
tion algorithms. We are currently expanding our evac-
uation models for large-scale simulations. In addition,
disaster relief agent-based models are in the testing stage
and will soon be integrated into the whole framework of
the DIM2SEA model. Finally, agent-based labor market
models have been implemented, and microeconomic sta-
tistical modeling is currently underway to understand the
determinants of insurance expenditure and its relationship
with the existence of natural hazards in the study area.
Further results for each component of the DIM2SEA can
be verified in [11, 18, 44, 48–54].
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