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Two-dimensional ionospheric total electron content
(TEC) maps have been derived from ground-based
Global Navigation Satellite System (GNSS) receiver
networks and applied to studies of various ionospheric
disturbances since the mid-1990s. For the purpose
of monitoring and researching ionospheric conditions
and ionospheric space weather phenomena, we have
developed TEC maps of areas over Japan using the
dense GNSS network, GNSS Earth Observation NET-
work (GEONET), which consists of about 1300 sta-
tions and is operated by the Geospatial Information
Authority of Japan (GSI). Currently, we are provid-
ing high-resolution, two-dimensional maps of abso-
lute TEC, detrended TEC, rate of TEC change index
(ROTI), and loss-of-lock on GPS signal over Japan on
a real-time basis. Such high-resolution TEC maps us-
ing dense GNSS receiver networks are one of the most
effective ways to observe, on a scale of several 100 km
to 1000 km, ionospheric variations caused by traveling
ionospheric disturbances and/or equatorial plasma
bubbles, which can degrade single-frequency and dif-
ferential GNSS positioning/navigation. We have col-
lected all the available GNSS receiver data in the
world to expand the TEC observation area. Currently,
however, dense GNSS receiver networks are available
in only limited areas, such as Japan, North America,
and Europe. To expand the two-dimensional TEC ob-
servation with high resolution, we have conducted the
Dense Regional and Worldwide International GNSS
TEC observation (DRAWING-TEC) project, which is
engaged in three activities: (1) standardizing GNSS-
TEC data, (2) developing a new high-resolution TEC
mapping technique, and (3) sharing the standardized
TEC data or the information of GNSS receiver net-
work. We have developed a new standardized TEC
format, GNSS-TEC EXchange (GTEX), which is in-
cluded in the Formatted Tables of ITU-R SG 3 Data-

banks related to Recommendation ITU-R P.311. Shar-
ing the GTEX TEC data would be easier than sharing
the GPS/GNSS data among those in the international
ionospheric researcher community. The DRAWING-
TEC project would promote studies of medium-scale
ionospheric variations and their effect on GNSS.

Keywords: GNSS, ionosphere, total electron content,
TEC, loss-of-lock

1. Introduction

The Earth’s atmosphere at an altitude of 60 km or
higher is partially ionized by solar EUV and a part of it is
present as ionized gas (plasma). This plasma-rich region
in the atmosphere is called the ionosphere. The electron
density in the ionosphere is generally highest at an altitude
of about 300 km. The ionosphere is well known to affect
trans-ionospheric transmissions with satellites for com-
munications, positioning, and navigation purposes. The
ionosphere varies greatly under the influence of the activ-
ities of the sun, the magnetosphere, and the lower atmo-
sphere, and it sometimes interferes with satellite commu-
nications and degrades precise satellite positioning. It is
known that errors in the Global Navigation Satellite Sys-
tem (GNSS), including GPS, are caused by several fac-
tors, including satellite clock error, trajectory error, or
multi-path effects, but the most significant factor is the
propagation delay of GNSS signals in the ionosphere. Re-
cently, in the multi-GNSS era, considerable efforts have
been directed toward research on the ionospheric varia-
tions and their effects on precise GNSS positioning and
navigation. A precise ionospheric total electron content
(TEC) map or model is required to study ionospheric vari-
ations and to improve the ionospheric delay correction for
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IGS Global Ionospheric TEC Map: 00-02 UT on 7 Sep 2017
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Fig. 1. An example IGS TEC map with spatial resolution of
5◦ in longitude and 2.5◦ in latitude, with a temporal resolu-
tion of 2 hours.

GNSS positioning.
Figure 1 is an example of the ionospheric TEC

maps that are generally used, the Global Ionospheric
Map (GIM) in the IONosphere map EXchange (IONEX)
format, provided by the International GNSS Service
(IGS) [1]. GIM TEC data cover the global ionosphere
with a spatial resolution of 5◦ in longitude and 2.5◦ in
latitude, with a temporal resolution of 2 hours. GIM is
useful to study ionospheric variations with 1000 km to
global scale (hereinafter referred to as “large-scale”), vari-
ations such as diurnal variation and the equatorial ioniza-
tion anomaly, which is electron density enhancement lo-
cated away from the magnetic equator.

Ionospheric variations on a scale of several 100 km
to 1000 km (hereinafter referred to as “medium-scale”),
caused by travelling ionospheric disturbances (TIDs)
and/or equatorial plasma bubbles (EPBs) frequently ob-
served at mid- and low-latitudes, can degrade single-
frequency and differential GNSS positioning/navigation.
The GIM does not have sufficient spatial and temporal
resolution to reproduce these medium-scale ionospheric
variations. To clarify generation and propagation mech-
anisms of medium-scale ionospheric phenomena and to
investigate their effects on GNSS positioning, dense and
wide-coverage ionospheric observations and the corre-
sponding TEC mapping techniques are needed.

We have developed high-resolution, two-dimensional
TEC observation systems using a dense GNSS receiver
network in Japan, and we have conducted a project to ex-
pand their observation area using all the available GNSS
receiver networks with the collaboration of space weather
researchers in the world since 2011. In this paper, we
introduce our high-resolution ionospheric TEC observa-
tions using dense GNSS receiver networks, including an
outline of the project, named Dense Regional and World-
wide International Networks of GNSS-TEC observation
(DRAWING-TEC).
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Fig. 2. Distribution of GPS stations of GEONET.

2. High-Resolution TEC Observations over
Japan

We have observed ionospheric disturbances using two-
dimensional maps of TEC derived from the dense GNSS
network, GNSS Earth Observation Network System
(GEONET), which consists of about 1300 GPS receivers
and is operated by the Geospatial Information Author-
ity of Japan (GSI). The distribution of GNSS stations of
GEONET is shown in Fig. 2. Currently, using only GPS
data, we routinely provide two-dimensional maps of abso-
lute TEC and detrended TEC with 60-, 30-, and 15-minute
windows over Japan. The maps have a spatial resolu-
tion of 0.15◦ in longitude and 0.15◦ in latitude, with a
temporal resolution of 30 seconds. The absolute TEC
values were derived by applying a technique in which
a weighted-least-square fitting is used to determine un-
known instrumental biases, assuming that the hourly TEC
average is uniform within the area covered by a given GPS
receiver [2]. Detrended TEC data are derived from the
perturbation components of TEC data by subtracting the
running average of the corresponding time window for
each line-of-sight (LOS) between satellite and receiver.
Such a TEC mapping is the direct measure of ionospheric
structures and useful to reveal spatial structures and tem-
poral evolutions of medium-scale ionospheric phenom-
ena such as TID, as shown in Fig. 3 [3, 4]. These data
and quick-look maps from 1997 to the present are avail-
able on the NICT website (http://seg-web.nict.go.jp/GPS/
GEONET/).

Figure 4 shows two-dimensional maps of absolute
TEC (left), rate of TEC change index (ROTI) (middle),
and loss-of-lock on GPS signal (LOL) rate during the time
period 12:20–13:00 UT (21:20–22:00 JST) on Feb. 12,
2000, just after the main phase of a strong geomagnetic
storm [5]. ROTI is the standard deviation of time dif-
ferential TEC in five minutes, often used as the index of
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Fig. 3. High-resolution detrended TEC map with 60-min
window derived using GEONET data. Typical nighttime
medium-scale TIDs are captured over Japan.

ionospheric irregularity on a scale of several tens of km
and considering the velocity of a LOS ionospheric pierce
point at an assumed ionospheric height at 300 km [6, 7].
The LOL rate is the occurrence rate of cycle slip in GPS
L1 or L2 signals for 5 minutes and derived using the
loss of lock indicator in the Receiver INdependent EX-
change format (RINEX) data of GPS. Fresnel-scale iono-
spheric irregularities, that is, several 100-m scale for GPS
L1 and L2 signals, could cause GPS scintillation and, in
the worst case, result in LOL on GPS signals. Although
the LOL could be caused not only by several 100-m
scale ionospheric irregularities but also by the multi-path
effect or performance of the GPS receiver/antenna sys-
tem, an increase in LOL rate occurring simultaneously
in many receivers could be a proxy of the ∼100-m scale
ionospheric irregularity. Small-scale structures, such as
ionospheric irregularities with spatial scale from several
tens of km down to several meters, may be generated by
the nonlinear cascading process from the medium-scale
and/or large-scale ionospheric structures. These small-
scale structures are associated with a localized but in-
tense ionospheric plasma-density gradient and can scin-
tillate the GNSS radio wave. The small-scale structures
can be monitored by the indices of GNSS data fluctua-
tions, such as the ROTI and LOL rate. The dense GNSS
network is helpful to monitor the location and motion of
areas of the enhanced small-scale irregularities as well.

In Fig. 4, background absolute TEC values at 12:20
UT (21:20 JST) are 60 TECU (1 TECU = 1016/m2) or
more in southern Japan and decrease with latitude. This
TEC level is more than double the normal level in this
season. The arrows indicate TEC depletion regions that
have a zonal scale of several 100 km and extend in the
meridional direction. These TEC depletion regions move
eastward at ∼50 m/s. Corresponding to the TEC deple-

tions, ROTI enhancements are seen in the same regions
and move eastward at the same velocity. This indicates
that ionospheric irregularities of several tens of kilome-
ter scale exist in the TEC depletion regions. Similar to
ROTI enhancements, LOL rate enhancements are seen in
the same regions and move eastward at the same velocity.
The LOL rate maps in Fig. 4 show that LOL occurs over
a wide area, indicating that many receivers suffer LOL
for a significant number of GPS satellites simultaneously.
Therefore, it is reasonable to consider that these LOL rate
enhancements are caused by GPS scintillations due to the
ionospheric irregularities.

Summarizing the ionospheric events in Fig. 4, TEC de-
pletions with zonal widths of several 100 km and extend
in the meridional direction are seen to move eastward in
southern Japan. Ionospheric irregularities of both sev-
eral tens of km scale and several 100-m scale occurred in
these TEC depletion regions. These features are consis-
tent with that of EPB frequently observed at low latitudes
after sunset. EPBs are low density plasma “bubbles” in
the ambient high density ionospheric plasma. They are
basically caused by the nonlinear growth of Rayleigh-
Taylor instability, which is enhanced after sunset due to
local uplift of the bottomside ionosphere resulting from
the dynamo effect by F-region neutral winds and the ef-
fect of rapid changes in E-region electric conductivity at
sunset [8]. These bubbles intrude into the topside iono-
sphere, extending over several 1000 km along the mag-
netic field line. The plasma bubbles generally drift east-
ward with the background neutral wind. Although there is
no strong relationship between the occurrence of EPB and
geomagnetic storms in the climatology of EPB [9], the
ionospheric disturbances observed in Japan and seen in
Fig. 4 are the EPB that developed to high altitude/latitude
and reached southern Japan when the background iono-
sphere was extremely uplifted at medium and low lati-
tudes due to the intense enhancement of an eastward elec-
tric field during the geomagnetic storms.

In addition to TID and EPB, high-resolution TEC maps
can reveal ionospheric variations induced by lower atmo-
spheric waves that are triggered by intense earthquakes.
Fig. 5 shows concentric waves detected in the detrended
TEC map with a 10-min window about 70 minutes af-
ter the 2011 Tohoku earthquake [10]. These concentric
waves in the ionosphere began to appear about 7 min-
utes after the onset of the earthquake at 14:46 JST (05:46
UT). The center of the concentric waves is located about
170 km to the southeast of the epicenter [11] (indi-
cated by a star in Fig. 5) and near the estimated tsunami
source [12]. Although the estimated extent of the fo-
cal region of the mainshock, a region of at least 450 km
north-south and 200 km east-west [13], makes it neces-
sary to consider the spatial scale of the mainshock and the
tsunami source to reveal their precise positional relation-
ship, it would be valid to consider the center of the iono-
spheric variation to be located southeast of the starting
point of the rupture and located closer to the center of the
estimated tsunami source area. This event helps to clar-
ify the relationship between the ionosphere and the lower
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Fig. 4. Two-dimensional maps of absolute TEC (left), ROTI (middle), and loss-of-lock rate (right) 12:20–13:00 UT (21:20–22:00
JST) after the main phase of a strong geomagnetic storm on Feb. 12, 2000. Eastward moving plasma bubble structures designated
by arrows were captured in absolute TEC maps.

atmosphere because of the clear causal connection. In ad-
dition, considering the fact that the ionosphere started to
fluctuate about 7 minutes after the earthquake and that the
center of the ionospheric variations corresponds closely
to the tsunami source, further development of real-time
ionospheric observation could allow us to monitor the
tsunami arrival over a wide area. In order to clarify
the quantitative relationship between a tsunami and iono-
sphere variation, it is necessary to research the generation
and propagation mechanism of atmospheric waves while
taking account of the spatial scale of the tsunami source.

3. DRAWING-TEC Project

As mentioned in the previous section, high-resolution,
two-dimensional ionospheric density mapping using
dense GNSS receiver networks is a powerful tool for mon-
itoring medium-scale ionospheric variations, such as EPB
and TIDs. We have collected all the available GNSS re-
ceiver data in the world to expand their observation area.
Fig. 6 shows the distribution of the GNSS stations as of
2017, more than 8000 stations whose data are collected
by NICT. These GNSS data are provided by the Interna-
tional Geoscience Services (IGS), the University NAVS-
TAR Consortium (UNAVCO), Scripps Orbit and Perma-
nent Array Center (SOPAC), and other global and regional
data centers, totaling more than 50 data providers in all.

538 Journal of Disaster Research Vol.13 No.3, 2018



Total Electron Content Observations by Dense Regional and
Worldwide International Networks of GNSS

124 128 132 136 140 144 148 152
24

28

32

36

40

44

48

06:56:00(UT)  03/11 2011
TEC [1016/m2]

-0.40

-0.30

-0.20

-0.10

0.00

0.10

0.20

-0.40

-0.30

-0.20

-0.10

0.00

0.10

0.20

Fig. 5. Concentric waves detected by the detrended TEC
map with 10-min window after the 2011 Tohoku earthquake.
The star indicates the epicenter of the earthquake.
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In addition to Japan, dense regional GNSS receiver net-
works are available in North America and Europe. We
have also provided high-resolution TEC maps of North
America [14] and Europe [15].

Figure 7(a) shows concentric waves observed in the
20-min detrended TEC map over North America after the
2013 Moore EF5 tornado [16]. They were observed for
more than 7 hours throughout North America. A com-
parison of the TEC observations and infrared cloud im-
age from the GOES satellite indicates that the concentric
waves are caused by supercell-induced atmospheric grav-
ity waves. This observation is the first clear evidence of
a severe meteorological event causing atmospheric waves
propagating upward in the upper atmosphere and reaching
the ionosphere.

Figure 7(b) shows a typical daytime medium-scale
TID (MSTID) observed in the 60-min detrended TEC
map over Europe [15]. MSTID can generally be classi-
fied into two types, nighttime and daytime MSTIDs, ac-
cording to their appearance time and propagation direc-
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Fig. 7. (a) Concentric waves after the 2013 Moore EF5
Tornado over North America and (b) typical daytime MSTID
over Europe, detected by the high-resolution detrended TEC
maps.

tion. The typical nighttime MSTID shown in Fig. 2 has a
wavefront in the northwest-southeast direction and prop-
agates southwestward in the northern hemisphere. On the
other hand, the typical daytime MSTID has a wavefront
elongated almost zonally and propagates almost south-
ward in the northern hemisphere. Several characteristics
of these MSTIDs, such as preferred directions and ap-
pearance times, are not adequately explained by the clas-
sical theory proposed by Hines [17], in which MSTIDs
are an ionospheric manifestation of atmospheric gravity
waves with great amplitude neutral wind oscillation. Re-
cent observational and numerical simulation studies have
suggested that the nighttime MSTID could be generated
by electrodynamical forces with coupling between iono-
spheric E- and F-regions [18, 19]. Comparing characteris-
tics of MSTIDs among different longitudes and latitudes
using these high-resolution TEC maps can contribute to
studies of mechanisms for generating both nighttime and
daytime MSTIDs.

Currently, however, dense GNSS receiver networks
are available only at limited areas, such as Japan, North
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America, and Europe, as shown in Fig. 6. More GNSS
receiver data are needed, especially in the sparse regions,
namely, Asia, Africa, and the equatorial and polar regions,
to study the overall spatial structure and temporal evolu-
tion of medium-scale ionospheric variations such as EPB
and TID. The difficulty in collecting GNSS receiver net-
work data in these regions may be attributed mainly to
two reasons: one is a lack of information sharing of do-
mestic GNSS receiver networks in the international iono-
spheric researcher community and the other is govern-
ment and/or data provider policies to provide GNSS data
only to domestic users. The second reason would be
because GNSS receiver data include phase and pseudor-
ange information that is quite valuable both commercially
and militarily for various applications, such as precise
positioning/navigation, meteorological observation, and
ionospheric observation. In order to overcome this diffi-
culty and to expand the high-resolution TEC observation
area, we started a project, the Dense Regional and World-
wide International Networks of GNSS TEC Observation
(DRAWING-TEC) in 2011.

The DRAWING-TEC project mainly consists of three
subprojects:

1. Standardizing the GNSS-TEC data format for high-
resolution TEC maps

2. Developing a new high-resolution TEC mapping
technique using the standardized TEC data

3. Sharing the standardized TEC data and the data or
information of GNSS receiver networks among the
international ionosphere and GNSS researcher com-
munity.

Regarding item 1, one of the best-known standardized
formats for GNSS-TEC data is the IONEX format [1].
Although the IONEX format data cover the global iono-
sphere, they describe only vertical TEC map data with
a spatial resolution of 5◦ in longitude and 2.5◦ in lati-
tude with a temporal resolution of 2 hours. Using the
IONEX data, it is difficult to describe higher resolution
TEC maps corresponding to the density of GPS/GNSS re-
ceiver networks. It is thus necessary to make a different
format that could be applied in order to make the resolu-
tion of TEC maps flexible. We have developed a new stan-
dardized TEC format, GNSS-TEC EXchange (GTEX).
The GTEX data format describes slant TEC for each
GNSS satellite and is filed per day and per receiver, as is
RINEX, the standardized GPS/GNSS format. The GTEX
TEC format makes it possible to derive high-resolution
TEC maps corresponding to the density of GNSS re-
ceiver networks, as shown in Figs. 2 and 6. Sharing
the TEC data in the GTEX format would be easier than
sharing the GPS/GNSS data among the members of the
international ionospheric researcher community because
the GTEX TEC data exclude information on GPS/GNSS
data, except for information available as ionospheric ob-
servations. NICT, as a Japanese delegate to the Inter-
national Telecommunication Union (ITU), first proposed
the GTEX as a format for the international exchange and

sharing of GNSS-TEC data. NICT submitted a contribu-
tion paper to meetings of Working Party 3L (ionospheric
propagation and radio noise), Study Group 3 (SG3, ra-
diowave propagation) of ITU-R in Geneva, Switzerland in
Jun. 2013. The GTEX format was successfully approved
as one of the standard data formats for trans-ionospheric
data and included in Recommendation ITU-R P.311-16
Annex 1 in 2015 [20]. It was used by the Ionospheric
Studies Task Force of the International Civil Aviation Or-
ganization (ICAO) Asia-Pacific Region as a standard for-
mat for sharing TEC data in the region to characterize
the ionospheric behavior for aeronautical applications of
GNSS [21].

Regarding item 2, we have developed the RNX2GTEX
application in Linux and Windows versions to convert
GPS/GNSS data to GTEX TEC data. Such applica-
tions are necessary to increase the numbers of GTEX-
TEC users and data and to promote ionospheric stud-
ies. RNX2GTEX for Linux/Unix consists of a set
of programs written in Fortran 77 and a shell script.
RNX2GTEX for Windows is an application for creating
GTEX data files from RINEX data using an Explorer-
like GUI. These applications are open to the public and
are available on the DRAWING-TEC website: http://seg-
web.nict.go.jp/GPS/DRAWING-TEC.

Item 3 would be the most important to expand the TEC
observation area and to promote studies of medium-scale
ionospheric variations and their effect on GNSS. We have
developed the GTEX database (ver. 1.0), which was de-
rived from all the available online GNSS receiver data
from 2000 to the present. This database is available via
the DRAWING-TEC website on a request basis. NICT
first conducted to form the Asia-Oceania Space Weather
Alliance (AOSWA) [22] to share data and other informa-
tion related to space weather in the Asia and Oceania
regions. The 1st AOSWA workshop was held in Chi-
ang Mai, Thailand in February 2012, hosted by NICT
and Chiang Mai University. In this workshop, 76 space
weather researchers from 30 organizations in 10 coun-
ties in the Asia-Oceania region discussed data and infor-
mation of TEC and GNSS receiver networks. Since the
first AOSWA workshop, we have started GTEX data shar-
ing with some foreign institutes, such as King Mongkut’s
Institute of Technology Ladkrabang (KMITL) in Thai-
land and the Universiti Kebangsaan Malaysia (UKM) in
Malaysia, to develop dense wide-coverage TEC maps, es-
pecially of the Asia-Oceania region.

One successful outcome of the DRAWING-TEC
project has been the detection of EPB structures in
two-dimensional TEC and ROTI maps in the South-
east Asia region. These maps were produced using
127 GNSS stations from the Malaysia Real-Time Kine-
matics GNSS Network (MyRTKnet), the Sumatran GPS
Array (SuGAr), and the IGS International GNSS Ser-
vice (IGS) networks, as shown in Fig. 8 [23]. Although
the equatorial region is one of the regions where it is
difficult to use dense GNSS receiver network data for
ionospheric research, reference [23] utilized these dense
GNSS receiver networks in Southeast Asia to study the
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two-dimensional structure of ionospheric plasma irregu-
larities and revealed latitudinal/longitudinal variations of
EPBs, including the spatial periodicity of the EPBs, which
could be associated with a wavelength of the quasiperi-
odic structures on the bottom side of the ionosphere seed-
ing the Rayleigh-Taylor instability.

KMITL plays an important role in collecting GNSS
data from different networks in Thailand. Currently, there
are 22 GNSS stations operated by Japanese partners, in-
cluding NICT, Kyoto University, and the Electronic Nav-
igation Research Institute (ENRI) as well as Thai part-
ners including KMITL, Chulalongkorn University, Chi-
ang Mai University, the Department of Public Works and
Town and Country Planning (DPT), and Aerothai. GNSS
and GTEX data are available on the Thai Space Weather
Information Center website: http://iono-gnss.kmitl.ac.th.
By employing the TEC data in Thailand, the predawn
plasma bubble cluster was detected after the reported dis-
appearance of plasma bubbles [24].

4. Summary and Future Perspectives

Several medium-scale (100 km to 1,000 km scale)
ionospheric variations caused by TID and EPB can de-
grade GNSS positioning/navigation. Medium-scale con-
centric waves have recently been detected after huge
earthquakes and severe meteorological events. However,
these medium-scale ionospheric variations have not been
sufficiently studied due to the lack of dense, wide-area
ionospheric observations. We have developed a high-
resolution, two-dimensional TEC observation system us-
ing dense regional GNSS receiver networks and studied
the medium-scale ionospheric variations. It is necessary
to expand the observation area for the study of the over-
all spatial structure and temporal evolution of ionospheric
variation and their effects on GNSS positioning and navi-
gation. We are conducting the DRAWING-TEC project to
expand the observation area using all the available GNSS
receiver networks through the collaboration of ionosphere
and GNSS researchers in the world. This project con-
sists of (1) standardizing GNSS-TEC data, (2) devel-
oping dense TEC mapping techniques, and (3) sharing
the standardized TEC or GNSS receiver data throughout
the world. We have developed a new TEC data format,
GTEX, as well as a RINEX-to-GTEX data conversion ap-
plication, RNX2GTEX. GTEX has been included in Rec-
ommendation ITU-R P.311-16 Annex 1. GTEX and/or
GNSS receiver data sharing has expanded in some re-
gions, such as Southeast Asia, and has revealed new char-
acteristics of EPB.

Although we believe the DRAWING-TEC project will
promote studies of medium-scale ionospheric variations
and their effect on GNSS, there are still some challenges
to their further promotion. The first one is upgrading the
application to use multi-GNSS. In recent years, in ad-
dition to the United States’ GPS, Japan’s Quasi-Zenith
Satellite System (QZSS), Russia’s GLONASS, the Euro-
pean Union’s Galileo, China’s BeiDou, etc., have been
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Fig. 8. A clear EPB structure (designated by an oval) de-
tected in a two-dimensional ROTI map of Southeast Asia
produced using 127 GNSS stations.

widely used as global satellite navigation systems. By us-
ing the data of all the available GNSS, it becomes pos-
sible to observe the ionosphere more broadly and more
densely. Currently, however, the RNX2GTEX applica-
tion only supports GPS data. It is necessary to upgrade
it for multi-GNSS compatibility. The GTEX format for
multi-GNSS data may also need to be optimized, though
the current version of GTEX format can support multi-
GNSS. One of the other challenges is the use of GNSS
data over the ocean, which is a large area devoid of high-
resolution ionospheric observations. Permanently oper-
ated GNSS receiver networks are generally limited to land
areas with much social or crustal activity. Although there
are a few GNSS buoy networks, such as the Nationwide
Ocean Wave information network for Ports and HArbourS
(NOWPHAS) [25], to monitor ocean waves, their distri-
bution is limited to narrow coastal areas (less than 20 km
from the coast), and their recorded data are currently lim-
ited to wave information. Reference [26] proposes the
new idea of establishing a dense buoy network in the
western Pacific by implementing multi-instrument buoys
that include GNSS receivers far from the coast. If the
GNSS observation data of such a wide-coverage, dense
GNSS buoy network becomes available, it will be a break-
through system not only for tsunami monitoring but also
for ionospheric monitoring, which can contribute to the
estimation of tsunami source areas and the forecasting of
tsunami arrivals.

GNSS positioning/navigation has become an indis-
pensable infrastructure not only for military and aero-
nautical applications but also for public use in recent
years, as car navigation systems and smartphones have
become popular. In addition, more precise and unin-
terrupted GNSS navigation is required in the fields of
agriculture, construction, mining, and self-driving cars.
Frequently observed medium-scale ionospheric variations
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can degrade GNSS positioning/navigation and, in the
worst case, make it unusable due to loss-of-lock on GNSS
signals. For the safe use of GNSS positioning/navigation
and the improvement of its precision and availability, it
is necessary to monitor the ionospheric variations more
precisely over a wider area and produce more adequate
augmentation information. The DRAWING-TEC project
can contribute to the safe and advanced use of GNSS in
society now and in the future.
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