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We developed a clustering method combining princi-
pal component analysis and the k-means algorithm,
which classifies earthquake scenarios based on the
similarity of the spatial distribution of earthquake
ground-motion simulation data generated for many
earthquake scenarios, and applied it to long-period
ground-motion simulation data for Nankai Trough
megathrust earthquake scenarios. Values for peak
ground velocity and relative velocity response at ap-
proximately 80,000 locations in 369 earthquake sce-
narios were represented by 15 principal components
each, and earthquake scenarios were categorized into
30 clusters. In addition, based on clustering results,
we determined that extracting relationships between
principal components and scenario parameters is pos-
sible. Furthermore, by utilizing these relationships,
it may be possible to easily estimate the approximate
ground-motion distribution from the principal compo-
nents of arbitrary sets of scenario parameters.

Keywords: long-period ground motion, simulation, prin-
cipal component analysis, clustering

1. Introduction

In seismic hazard assessments, that lead to the quan-
titative estimate of seismic risk, it is necessary to per-
form detailed evaluations of seismic ground motion for
every points likely to be affected. In addition, evaluat-
ing appropriate range of possible ground motions at each
point is also crucial. As is clear from the example of
the 2011 Tohoku earthquake, predicting an exact source
model (earthquake scenario) of a megathrust earthquake
in detail before the earthquake is impossible. Even with
limited earthquake scenarios to be evaluated, knowing
possible range of ground-motion would requires many
ground-motion simulations to account for the uncertain-
ties in source models.

In order to effective application of the results of these
ground-motion simulations to the disaster resilience, it

is necessary to easily extract useful information from
the vast amount of data derived from simulations and to
visualize it. The authors have built a system that ag-
gregates the many seismic waveforms produced by the
ground-motion simulations using parallel distributed pro-
cessing and visualized the statistical quantities for the
maximum amplitude calculated at each point [1]. The au-
thors also have built a parallel distributed processing sys-
tem that uses clustering to extract relationships between
the characteristics of ground motion in each area and
the source model (scenario parameters) from the ground-
motion simulation results for many earthquake scenar-
ios [2]. The authors have applied these systems to long-
period ground-motion simulation data for Nankai Trough
megathrust earthquake scenarios and examined their ef-
fectiveness.

In this study, we attempt to improve the efficiency of
extracting earthquake scenarios having similar ground-
motion distribution and establish relationships between
characteristics of shaking at each area with scenario pa-
rameters. To achieve this goal, we combine k-means
clustering, which we used in previous examinations,
with principal component analysis (PCA) for more effi-
cient computations. We then apply the method to long-
period ground-motion simulation data for Nankai Trough
megathrust earthquake scenarios.

2. Method and Results

In Fig. 1, we show the analysis pipeline used in our
study that combines principal component analysis and
clustering. The procedure consists of the following three
steps.

1 We standardize the ground-motion indices of the
ground-motion simulation at Q grid points to pro-
duce a mean of 0 and variance of 1. This operation
is performed for each of the N scenarios.

2 Using the standardized ground-motion indices from
the N scenarios, we extract P principal components
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Fig. 1. Flowchart of analysis pipeline.

to reduce the number of dimensions (Q→P). With
this, the ground-motion distribution from each sce-
nario, which was represented by standardized indices
at Q grid points, can be represented as coefficients
for the P principal components.

3 We apply the k-means algorithm to the P-
dimensional data to find clusters of scenarios.

In the following section, we describe the details of the
method with application to long-period ground-motion
simulation data for Nankai Trough earthquakes [3] as an
example. We use as the input the peak-ground velocity
and relative velocity response (damping of 5%; periods of
3, 5, 7, 10, and 20 s) at 77,609 locations based on ground-
motion simulations of 369 earthquake scenarios. These
ground-motion indices are produced from the simulated
waveforms. First, we apply standardization to the input
data so that for each scenario the mean is 0 and variance
is 1. With this standardization, differences between sce-
narios resulting from differences in earthquake magnitude
vanish, and the data are converted to a form in which the
spatial distributions of ground motion can be compared
directly. Although standardization is required when data
with different units are used, we use data having identi-
cal units. For this reason, we also examine the results of
using unstandardized data. In the following, however, un-
less otherwise noted, the results with standardization will
be shown.

We next performed PCA (e.g., [4]) on the input data
from 369 scenarios. PCA is a method that finds the P
vectors having the largest variances with respect to high-
dimensional input data and, by taking projections onto
those directions, obtains a P-dimensional subspace that
retains the characteristics of the input data. The sub-
space can be expressed as til = xi j ·w jl , where xi j, w jl ,
and til , represent the elements of the n×Q input matrix,
the Q×P coefficient matrix, and the n×P principal com-
ponent score matrix, in which i = 1, . . . ,n, j = 1, . . . ,Q,
l = 1, . . . ,P, n is the number of scenarios, and Q is the di-
mension of the input data (number of output points). Di-
mension of the input can be reduced by choosing a value
of P that is smaller than Q. In this study, we imposed
conditions in which, for each of the six ground-motion
indices, the proportion of variance for each principal com-
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Fig. 2. Cumulative proportion of variance up to the 15th

principal component. Left: using standardized data. Right:
using unstandardized data. Results for the six ground-
motion indices are shown.

ponent is greater than 1% and the cumulative proportion
of variance is greater than 85%. We decided to use up
to the 15th principal component (Fig. 2). The proportion
of variance refers to the ratio between the variance ac-
counted for by a principal component and the total vari-
ance.

Figure 3 shows the results of PCA. Several of the
principal components from the 1st to the 15th are shown,
which were calculated for relative velocity response val-
ues (periods of 3, 5, 7, and 10 s) as examples. Focusing
on the 5-s period results, the 1st principal component had
large amplitudes in the left half (West Japan) of the com-
puted region and small amplitudes in the right half (East
Japan), and the 2nd principal component had large ampli-
tudes near the center of the computed region (the Kinki
region) and small amplitudes on the left (Kyushu) and
right (Chubu and Kanto) sides. The 3rd principal com-
ponent had large amplitudes on the right side (Kanto re-
gion) and small amplitudes in the center and on the left
side (West Japan). Even though the data for each pe-
riod was analyzed independently, the 1st and 2nd princi-
pal components had common characteristics at each pe-
riod. With this analysis, the ground-motion distribution
for each scenario that had been expressed by amplitude
values at 77,609 locations was expressed approximately
as a linear combination of 15 principal components.
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We next performed clustering of earthquake scenarios
using the k-means algorithm (e.g., [5]), which is a non-
hierarchical clustering algorithm. The k-means algorithm
categorizes the data into k clusters so that the total sum
of the squared Euclidean distances between data points
to their cluster centers is minimized. Before applying
k-means, fixing the number of clusters k was necessary.
Based on the conditions that multiple similar clusters can
exist in the results and that only similar scenarios should
be included within a cluster, we decided after testing mul-
tiple values that k = 30 was a good value. We used the
Python machine learning library scikit-learn for our clus-
tering analysis.

In Fig. 4, we show the results of partitioning the scenar-
ios into 30 clusters using the 5-s period relative velocity
response values. Each scenario was represented by 15 co-
efficients with respect to the principal components (prin-
cipal component scores). This means that the ground-
motion distribution for each scenario could be represented
by multiplying the principal components shown in Fig. 3
by the corresponding coefficients shown in Fig. 4, then
summing over them. Fig. 4 shows all scenarios within a
given cluster on top of each other, and we can see that
clusters were composed of scenarios with similar prin-
cipal component scores and that there was little disper-
sion within a cluster. We note that there is no particular

meaning to the ordering of the clusters. From these re-
sults, we can see for example that the 6th cluster (cls = 6)
had a large contribution from the 1st principal component,
and the 4th cluster (cls = 4) contained a large contribu-
tion from the 2nd principal component. The 3rd cluster
included the largest number of earthquake scenarios.

Figure 5 shows the distributions for relative velocity
response values (damping of 5%, period of 5 s) in earth-
quake scenarios contained in (as shown in the figure from
top to bottom) the 6th, 4th, and 3rd clusters. Because the
unstandardized amplitudes are used here, the differences
in absolute values stand out. However, if focus is directed
to the characteristics of the spatial distribution, the 6th

cluster had a tendency for amplitudes in West Japan to be
larger, and this matches the characteristics of the 1st prin-
cipal component (Fig. 3). Similarly, the 4th cluster had
a distribution in which the amplitude in the Kinki region
(near the center of the computed region) was large rel-
ative to other regions, which matches the characteristics
of the 2nd principal component. For the 3rd cluster, am-
plitudes to the east of the Chubu region (right half for the
computed region) tended to be large, and this is consistent
with the principal component scores from the 1st through
3rd principal components being negative. Although the 3rd

cluster contained the largest number of earthquake sce-
narios, the occurrence probability of each earthquake sce-

Journal of Disaster Research Vol.13 No.2, 2018 257



Maeda, T. et al.

with standarization without standarization
Sv (T=5s)

Sv (T=10s)

(i) (ii)
(iii)(iv)

(v)

0 max. min. max.

scenario parameter score

cl
us
te
r

(vi)

(i) Source area (①~⑱)
(ii) Rupture starting point (1~10)
(iii) Asperity (middle-segment)

(iv) Asperity (shallow-segment)
(v) Slip velocity function, rupture velocity,  and fmax
(vi) Principal component(1~15)

1

2

3

4

5

10

①
②
③
④
⑤
⑥

⑦
⑧ ⑨

⑩
⑪
⑫

⑬
⑭ ⑮ ⑯

⑰
⑱

7

6

8

9

Source area Rupture starting point Asperity

Fig. 6. Relationships between scenario parameters and principal component scores for each cluster. Top left: results for standardized
5- and 10-s period data. Top right: results for unstandardized 5- and 10-s period data. The columns to the left in white-red represent
scenario parameters, those to the right in blue-yellow-red are principal component scores, and each row corresponds to a cluster.
Details of the scenario parameters are shown at the bottom. Note that we only show the two patterns of middle-segment asperity
(deep and shallow cases) in the asperity panel.

nario was different [3], and it is not necessarily the case
that the ground-motion characteristics of the 3rd cluster
represented the most likely ground-motion distribution to
occur in a Nankai Trough earthquake. We succeeded in
performing a cluster analysis of earthquake scenarios us-
ing the method outlined in Fig. 1 based on the similarity
of ground-motion spatial distribution.

3. Discussion

We examined the relationships between the scenario
parameters (source parameters) within each cluster and
the principal component scores. The scenario parameters

consisted of a source area (18 small regions), rupture start-
ing points (10 points), middle-segment asperity (three pat-
terns), shallow-segment asperity (two patterns), slip ve-
locity function at shallow-segment asperity (two patterns),
shallow-segment rupture velocity (two patterns), and fmax
(two patterns) for a total of 39 components. Parameters
for each scenario were represented in Boolean form, with
components that apply to the scenario as 1, otherwise as 0.
In Fig. 6, we plotted the averages of principal component
scores and scenario parameters for all scenarios in each
cluster. The color scales were determined for each sce-
nario parameter and principal component score so that the
magnitudes could not be compared directly between dif-
ferent scenario parameters or principal component scores.
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Fig. 6 shows the relationships between scenario parame-
ters and principal component scores based on clustering
results using relative velocity response values with peri-
ods of 5 and 10 s. The clusters were rearranged in de-
scending order of 1st principal component score. With
focus on the 5-s period results, clusters that were ranked
high in the 1st principal component score had the follow-
ing characteristics: 1) the rupture starting point tended to
be located in the center or to the east of the source area,
2) the source areas may have been strictly in the western
regions, and 3) the shallow-segment asperity was located
on the western side (parts circled by dashed lines in the
figure). With this combination of scenario parameters, the
rupture in the shallow-segment asperity propagated from
east to west, and with the forward directivity effect, this
was expected to result in larger ground-motion amplitudes
to the west of the source area. This coincided with the
characteristics of the 1st principal component shown in
Fig. 3, in which the amplitude was larger in West Japan,
and we confirmed that a relationship existed between sce-
nario parameters and principal component scores.

For reference, we also show the results of using unstan-
dardized data (Fig. 6). With no standardization, the influ-
ence of the magnitude of earthquakes on the amplitudes
was retained, and the size of the source area strongly con-
tributed to the clustering results. With standardization,
scenarios with different source areas were contained in
one cluster and, therefore, different shades of color are
shown in the source area parameters. In the unstandard-
ized case, the colors are either very dark or very light, in-
dicating that the clusters are composed of scenarios with
the same source areas. In both the 5- and 10-second pe-
riod cases, clusters having large contributions from the
1st principal component tended to have rupture starting
points from the center to the west of the source area, and
shallow-segment asperity tended to be on the eastern side.
This combination of parameters was expected to make the
ground-motion amplitude larger to the east of the source
area, and although we omit the details because of space
limitations, we confirmed that this is consistent with the
characteristics of the 1st principal component with respect
to the 5-s period unstandardized data.

We showed that earthquake scenarios can be catego-
rized by clustering them into similar groups and that the
relationships between principal components and scenario
parameters can be extracted from the clustering results.
It is possible that, by quantitative evaluation of the rela-
tionships between principal components and scenario pa-
rameters, ground-motion distributions corresponding to
an arbitrary scenario parameter can be estimated. It is
also possible to suggest additional earthquake scenarios
by examining scenario parameters corresponding to the
ground-motion distribution that cannot be represented by
the current clusters.

4. Conclusion

In this study, we developed a categorization method
that combines principal component analysis and the
k-means algorithm, for ground-motion indices derived
from large-scale high-resolution simulation data for many
earthquake scenarios. We applied the method to long-
period ground-motion simulation data of Nankai Trough
megathrust earthquakes. As a result, earthquake scenar-
ios that were similar in terms of ground-motion distri-
butions were grouped together by means of clustering,
and we showed that the relationships between principal
components and scenario parameters can be extracted.
In this investigation, we examined qualitative relation-
ships between scenario parameters and principal compo-
nent scores, and if these relationships could be evaluated
quantitatively such as by inverse analysis, it was gener-
ally possible to estimate easily the approximate ground-
motion distribution for an arbitrary combination of sce-
nario parameters using the principal components. In ad-
dition, we determined that if it is possible to extract earth-
quake scenarios that are not categorized within the current
clusters, we can effectively enrich the earthquake scenario
set that forms the basis for seismic hazard assessment.

Because we used only the ground-motion amplitude
data, it was still necessary to examine the appropriate
ground-motion indices in order to extract useful informa-
tion about seismic hazards. In addition, it is necessary
to examine a different set of earthquake scenarios with
different source areas. These hazard assessments are the
premises for risk assessments. Another important task for
future work is to perform a similar analysis for risk in-
formation, such as the exposed population evaluated from
hazard information.

This study is an example of technology development
for sharing and utilizing high-capacity and high-level dis-
aster information from large-scale high-resolution numer-
ical simulations. To advance the development of such
technologies, the National Research Institute for Earth
Science and Disaster Resilience maintains an earthquake
hazard information-sharing system known as the Japan
Seismic Hazard Information Station (J-SHIS) [6] and
is developing mutual operation-type information-sharing
platform, known as the e-Community Platform [7] and
cloud system for joint public-private crisis manage-
ment [8]. Expanding the functionalities of these systems
is also a major task.
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