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In analyzing observation data and simulation results,
there are frequent demands for comparing more than
one data on the same subject to detect any differences
between them. For example, comparison of obser-
vation data for an object in a certain spatial domain
at different times or comparison of spatial simulation
data with different parameters. Therefore, this paper
proposes the difference operator in spatio-temporal
data warehouses, which store temporal and spatial ob-
servation data and simulation data. The requirements
for the difference operator are summarized, and the
approaches to implement them are presented. In ad-
dition, the proposed approach is applied to the mass
evacuation of simulation data in a tsunami disaster,
and its effectiveness is verified. Extensions of the dif-
ference operator and their applications are also dis-
cussed.

Keywords: data warehouse, difference operator, spatio-
temporal databases, disaster information, simulation data

1. Introduction

As big data attracts attention in a variety of fields, re-
search on data analytics for sophisticated analytic pro-
cessing of a large amount of data in a database has gained
popularity [6]. As for spatio-temporal databases, there
are growing demands for analyzing large-scale spatio-
temporal data in various domains such as mobility data,
moving trajectory data, and scientific data. Our research
group has been engaged in researches on spatio-temporal
data warehouses where large-scale spatio-temporal simu-
lation data are specially stored to enable interactive anal-
yses, which are referred to as simulation data warehouses.
In particular, the research is focused on analyzing simula-
tion data on tsunami and earthquake disasters [14].

This paper specifically examines differences as one
of the basic analytic requirements for spatio-temporal
data warehouses, in which detection of temporal changes
as well as differences between observation data with
different parameters or conditions should be required.
What types of difference operators are appropriate for
the above-mentioned data analyses have still not been
clarified. Various types of difference operators may be
possible, depending on the properties or application pur-

poses of object data. On the other hand, due to the chal-
lenges in detecting any remarkable changes within a large
amount of data, it is necessary to develop some efficient
algorithms by effectively using the latest database sys-
tem technology. Based on the above-mentioned context,
we proposes the general-purpose operators and the corre-
spongding methods, as well as analyzing the requirements
in order to detect any differences from the spatio-temporal
data warehouses.

This paper consists of eight sections: Section 2 de-
scribes related studies; Section 3 describes analyses of
the requirements for the difference operator; Section 4
shows specific images of the proposed difference opera-
tor; Section 5 provides definitions of the difference opera-
tor based on the preceding sections; Section 6 provides al-
gorithms for constructing difference histograms; Section
7 describes implementations and experiments of the dif-
ference operator; and Section 8 contains discussions and
summary.

2. Related Studies

Studies on data warehouses and OLAP (On-Line Ana-
lytical Processing), originally intended for business fields,
have now been extended to the research and developments
of spatio-temporal data.

The 11th chapter of [13] and [4] describe commentaries
and studies on such research and development. Many of
the approaches to spatio-temporal data warehouses use
map data to analyze statistical information on maps (for
example, population distributions) and other information.
In some cases, they use temporal information in addition
to spatial information. In that sense, the data warehouses
for moving trajectory data [7] are technically deeply re-
lated to this study in that spatio-temporal information is
collectively represented.

Simulations, an important research means in many sci-
entific fields, produce a huge amount of data day by
day. In this context, supporting simulation processes via
database technology is a promising approach to more
effectively supporting sophisticated analyses in scien-
tific fields. [8] reports the development of a simula-
tion database system with relatively simple simulation
processes integrated in the database ready for execution.
While that study aims to support simulation processes, the
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technology to be developed in this study is aimed at post
processing of simulations. Since it is challenging to di-
rectly link complex scientific simulations for which su-
percomputers are used to any database systems, this study
develops a system technology that is rather focused on the
storage, integration, and analyses of simulation-processed
data. The difference operator described in this paper will
be found necessary in such a context.

As data analytics has recently attracted increasing at-
tention [6], data visualization is found so effective in sup-
porting interactive users’ analyses that many studies on
that subject are now under way. From the database point
of view, technologies that can instantly visualize large-
scale data or select data to be visualized are important.
For example, MuVE [3] visualizes data by bar graphs as
a result of their consideration on the viewpoints that will
concentrate data into specified conditions remarkably dif-
ferent from the whole data. SEEDB system for the vi-
sualization of databases, though intended for category at-
tributes, is also closely related to this study [9].

3. Analyses of Requirements

The requirements for the difference operator for data
with spatio-temporal characteristics are discussed in this
section. As there could be many different object data or
applications for the difference operator, it is assumed that
one example for which the requirements for the difference
operator are analyzed. The assumed example is user’s
location information in a two-dimensional space at each
hour as acquired by GPS and portable devices. Such data
can be represented by the type of relations (id,x,y, t). The
object two-dimensional space is assumed to be spatially
gridded. Grid cells corresponding to given points x,y are
assumed easy to seek.

The following is an example of the requirements:

Aggregate the number of moving users in each
cell at time segments I1 = [t1, t2] and I2 = [t3, t4]
and report any cells with remarkable differences

This requirement is to seek any differences in the distri-
bution of the number of users between I1 and I2. Even
such a simple example of requirements involves several
considerations to be made as follows:

• What kind of aggregation is expected: The most
common way of aggregation would be to count the
numbers of records on the object cells and time seg-
ments (corresponding to SQL and SUM functions).
To seek their distribution patterns, the frequency dis-
tributions as divided by the total number of records
could be an option. For other kinds of object data,
one could use aggregation functions such as AVG
and MAX.

• How to detect “remarkable differences”: It becomes
necessary to formulate the differences. The require-
ments for the differences might be different with ob-
ject data and their applications. This study focuses

on the analysis of numerical data on the number of
evacuees on spatio-temporal simulation data. If any
differences in some of the cells in a certain spatial
domain (for example, changes in the number of evac-
uees) are greater than those in the entire domain, then
such differences are deemed remarkable. Whether
differences are remarkable or not is to be determined
by the thresholds specified by users. Among many
different indices to measure differences, errors be-
tween the difference value of each cell and the dis-
tribution of differences in the entire domain are uti-
lized. In this way, more resultant errors indicates
more substantial differences. Definitions of specific
difference errors are described in Section 5.

• Although it is assumed spatial grids are as presented
in the past, appropriate grain sizes of grids must be
selected in presenting the differences. As users are
not always in a position to know appropriate grain
sizes of grids in advance, the grain sizes of grids
specified by users may be too fine or too coarse.

• Freedom in Specifying Time Segments: For in-
stance, with T2 denoting the entire time, one can
measure any differences between a certain period of
time and the entire period of time. Moreover, assum-
ing time segments are not given, “which time seg-
ment in the time segment of width τ has the largest
difference from the entire period of time” may be-
come a possible requirement.

• In what form reports should be made: Reports may
be data that are output in text and tabular formats or
visualized another way. Assuming that reports are
to be visualized, definitions of differences should be
made to suit such visualization of reports.

Based on the above-mentioned analyses, the images of
basic difference operators are presented as an example in
the following section.

4. Images of Difference Operators

As an instance of the difference operator, the basic one
is considered. Fig. 1 shows the images of the basic differ-
ence operator. The figure on the left side of Fig. 1 shows
the aggregate results in time segment T1. The shades of
cells correspond to the sizes of aggregate values (the num-
ber of moving users in the cell during the period of time).
The middle figure shows the aggregate results in time seg-
ment T2. In actual use of the difference operator, one can
choose to use the aggregate values at the two time seg-
ments T1, T2 as they are or to use the normalized aggre-
gate values as divided by the total number, depending on
object data and their applications. In this paper, it is as-
sumed for the sake of simplicity that users have selected
the former method.

The figure on the right side of Fig. 1 approximately rep-
resented images of the differences between the aggregate
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Fig. 1. Image of the difference operator.

results of T1 and T2 for the input data at the time segments
T1, T2. In the heat map expressions, the more strongly red
regions are, the aggregate value at the time segment T2 is
larger than that at the time segment T1.

On the other hand, the more strongly blue regions, the
aggregate value at the time segment T1 tends to be larger
than that at the time segment T2. In order to represent a
rough trend of differences, any adjacent cells with a simi-
lar trend of differences are expressed in a lump as one cell.
Given quadtree-like spatial divisions to make the sides of
a cell equal in size to the power of 2 in length.

Presentation of such output results enables users to eas-
ily grasp any differences between two different time seg-
ments. The above-mentioned explanation that the aggre-
gate results at the time segments T1 and T2 should be gen-
erated before calculating their differences does not always
apply to actual implementations, where there is still room
for more efficient steps.

5. Settings of Difference Operators

The idea of spatial histograms [1, 2] is used to repre-
sent the results of the difference operator. Histograms
are widely used for database query optimization and oth-
ers [5], and their extensions to spatial databases make
spatial histograms of approximated spatial frequencies of
spatial data. The results of the difference operator are re-
ferred to as difference histograms.

Difference operators are formulated as follows. Sym-
bols used for the formulation of the difference operator
are shown in Table 1. First, a parameter n is given for
grain sizes by which to divide the space. In the case of
Fig. 1, n = 3 and the aggregation based on fine grain grids
is processed on the grid structure divided into 2nx2n = 64.
The set of total cells in the fine grain grid division is de-
noted by Cbase. Then, |Cbase|= 2n×2n.

There are many different approaches possible to con-
struct spatial histograms. What is important in construct-
ing spatial histograms is how to divide a space. One of
such approaches is to create cells of 2m× 2m (m < n) in
size (within the quadtree boundary) as shown in the figure
on the right side of Fig. 1. Another approach is STHoles
method [2] that allows the cells in a histogram to overlap
each other. This paper utilizes the quadtree approach that
is intuitively easy to learn as well as easy to formulate its
construction processes.

In the difference histogram shown in the figure on the

Table 1. Symbols and their meaning.

Symbol Meaning
n Parameters for fine grain divisions
Cbase Sets of cells in fine grain divisions
p Number of quadtree partitioning times in

constructing a difference histogram
Chist Set of cells in a difference histogram
B Number of cells of a difference histogram
error(c) Errors of Cell c of a difference histogram
total error(Chist) Errors of difference histogram Chist
count(c) Aggregate value of Cell c
base cells(c) Set of fine grain cells corresponding to

cell c of a difference histogram
level(c) Division level of Cell c

right side of Fig. 1, difference information is approxi-
mated by a limited number of cells. The set of cells in
such a difference histogram is denoted by Chist.

The total number of cells created in constructing a dif-
ference histogram by p times of the quadtree partitioning
approach described below is |Chist| = 3p + 1. In the case
of the figure on the right side of Fig. 1, since quadtree
partitioning processing has been executed twice, creating
seven cells in total 3×2+1 = 7.

In this paper, it is assumued that the total number of
cells which is denoted by B, in a difference histogram
is specified by users. The parameter B needs to meet
the constraint of B = 3p + 1 (p = 0,1, . . . ,) according to
the definitions of difference histograms. Moreover, as the
granularity of difference histograms cannot be finer than
that of the original data, B≤ |Cbase|.

Any difference histogram to be constructed should have
as small errors from the original difference data as possi-
ble. Square errors are assumed for an error function. The
aggregate value of a cell in the difference histogram or
cell c divided by a fine grain size, that represent the num-
ber of data contained in the region of cell c, is denoted by
count(c). The set of fine grain cells in cell c of the differ-
ence histogram is denoted by base cells(c). Then, errors
from cell c of the difference histogram are defined by the
following equation:

error(c) = ∑
b∈base cells(c)

(
count(c)
4level(c) − count(b)

)2

(1)

where b denotes the fine grain cells. level(c) represents
the level of cell c levels, where level 0 for fine grain cells
and level 1 for cells with one-level coarser grains, raising
the level number as the grain coarseness increases. The
above-mentioned equation is to seek errors between the
accurate aggregate value of fine grain cell c and the ap-
proximate aggregate value of cell c of the difference his-
togram. The aggregate value per area at a fine grain level
is obtained by dividing the aggregate value by 4level(c).

The total error of the difference histogram is defined by
the following equation, using the above-mentioned func-
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tion.

total error(Chist) = ∑
c∈Chist

error(c) . . . . . (2)

In this paper, assume that each cell corresponds to a total
number of data so that one can easily extend it to make the
mean data value of a cell correspond to the particular cell.
In constructing any difference histograms, they should be
so constructed that errors err should be minimum under
the given constraint B for the number of divisions.

6. Algorithm for Constructing Difference His-
tograms

At this point an algorithm based on an greedy approach
is considered. The basic policy is to divide a data set top
down. Algorithm 1 represents such an algorithm.

Algorithm 1: Histogram construction algorithm.
Input: R: Root cells, B: Total number of cells of a

histogram
Result: C: Set of cells as divided

1 C← children(R);
// Set of four children cells

2 p← (B−1)/3;
// Times of divisions (B > 1)

3 for i← 2 to p do
4 max Δerror← 0;
5 for c ∈C do
6 if is base cell(c) continue;

// Cannot be divided
7 Δerror← get Δerror(c);

// Improvements of errors
8 if Δerror > max Δerror then
9 max Δerror← Δerror;

10 copt← c;
11 end
12 end
13 C← (C\{copt})∪ children(copt);
14 end
15 return C;

Input R denotes grid cells corresponding to the object
spatial regions. In the case of Fig. 1, R refers to cells cor-
responding to the entire space. On the other hand, one
may specify some of the cells in the quadtree regions
of the entire space by R as well. In this case,one can
make the algorithm specific to differences in partial re-
gions. Another input B denotes the total number of cells
of a difference histogram. When B = 1, no divisions are
executed, and required processing is so obvious that Al-
gorithm 1 assumes B > 1.

Children (c) on lines 1 and 13 denotes a function that
returns the set of four children cells of a given Cell c.
get Δerror(c) on line 7 denotes the function that returns
possible improvements in error values when a given cell c
is assumed to be partitioned. It is defined by the following

equation:

get Δerror(c) = error(c)− ∑
c′∈children(c)

error(c′) (3)

In this algorithm, the outside loop is executed p− 1
times. The first divisive processing (when i = 1) is auto-
matically executed. Itinerating the process with increas-
ing i, the size of C on line 5 is given as |C| = 3i + 1, so
that the total number of executions of the inside loop can
be expressed by the following equation.

p

∑
i=1

(3i+1) =
3
2

p2 +
5
2

p . . . . . . . . . (4)

The above-mentioned times of loop executions indicates
computational complexity O(p2) and O(B2) as p is pro-
portional to B.

In actual computations, however, the value of B will not
be so large that though on the square order, computation
time will not pose any serious problem. As for the count
function that is called many times in the processing of the
algorithm, it needs to aggregate actual data, in which com-
putation of large-scale data may have a dominant impact.
Actual computational costs could be reduced by taking
advantage of the aggregate function of the database sys-
tem as described below or by retaining already previously
calculated values.

7. Implementation of Difference Operators
and Experiments

7.1. Implement Environment
The difference operator is implemented by using

SciDB [10–12], an array-oriented DBMS. Array-oriented
DBMS is a DBMS specific to the management of large-
scale array data and queries that appear in the scientific
fields. Therefore, it could be an adaptive array-oriented
DBMS for this paper, in which spatio-temporal simula-
tion data are assumed stored in SciDB for analyses so that
the difference operator can be applied to them as found
necessary. The difference operator is implemented in R
(programming language) and executed via the R interface
provided on SciDB. The visualization function described
below is also implemented in R.

In the processing of the difference operator, the
subset operator and aggregate operator that are pro-
vided by the R interface of SciDB extract all aggregated
information on corresponding cell sets based on the spec-
ified conditions for the spatio-temporal domains. In the
process of taking direct differences between two array
data, first calculate their connections by using the merge
operator, and set any cell connections with a null value as
0. Next, generate difference arrays by taking differences
in attributes, and then apply the above-mentioned algo-
rithm, and the results are represented in raster graphics by
the SciDB’s raster operator and further processed into
heat maps.
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Fig. 2. Evacuation data distributions.

7.2. Object Data Set
The object data set is mass evacuation simulation data

in the event of a large-scale earthquake in Kochi City,
which has been provided from the Sekimoto Research
Laboratory of the University of Tokyo. The sample mass
evacuation simulation data used in the experiments rep-
resents six-hour data compiled under the conditions in
which an earthquake occurs at 9 a.m., and the mass evacu-
ations peak sixty minutes after its occurrence: the simula-
tion of about forty thousand people’s evacuations is based
on person trip data.

Simulation data are a collection of records in the for-
mat of (id, time,x,y): id denotes user ID; time, a time
stamp; x,y, the location of a user at time. Simulation
data are static data that remain unchanged after the simu-
lation. In this work, in the query processing on data ware-
houses, it is generally taking advantages of static data, to
preprocess the data and make interactive processing more
efficient. The above-mentioned mass evacuation simula-
tion data is divided spatially by a maximum grain size
of 4,096× 4,096. Based on the fine grain spatial divi-
sion, the number of evacuees in each cell is aggregated
every minute. The aggregated data resulting from the pre-
processing are loaded on SciDB and are subjected to the
query processing of the difference operator.

Figure 2 shows an image of mass evacuation data,
which represents the aggregated mass evacuation frequen-
cies (the number of evacuees per area) at the time seg-
ments [9 : 00,15 : 00] for each cell after roughly dividing
the areas around Kochi City subject to the simulations into
64× 64 cells. The central part of the data corresponds to
the central part of Kochi City with the coast line running
below. The figure shows high evacuation frequencies in
the vicinity of the city’s central part. However, temporal
changes in the mass evacuations cannot be identified from
the figure.

The following query was utilized in the experiments.

Seek the difference histograms of the differ-
ences in the distribution of evacuees at time seg-
ments T1 = [9 : 00,10 : 00] and T2 = [11 : 00,12 :
00] in the entire area of the evacuation simula-
tion data.

The object space is the entire area subject to the simula-
tions.

In actual applications of the algorithm, treating cells

Fig. 3. Evacuation data at T1 = [9 : 00,10 : 00].

Fig. 4. Evacuation data at T2 = [11 : 00,12 : 00].

with a null value will be a problem. One idea may be to
regard the values of cells with a null value, such as 0, and
apply the above-mentioned algorithm; other possible ap-
proaches may be to leave cells with a null value out of
consideration or to interpolate the values of cells with a
null value by the values of nearby cells. If cells have no
values due to topographical constraints (for example, sea
regions in the mass evacuation data), external constraints
could be an idea. The approaches or ideas that are ap-
propriate depends on the user’s intentions, nature of the
data, and applications, and so it may be appropriate to
treat those approaches as options of the difference opera-
tor.

In the implementation of the difference operator in
the experiments, those optional approaches have been re-
viewed and the decision reached was to leave cells with a
null value out of consideration. As for the aggregate val-
ues, specifically in Eq. (1) the domain should be divided
by the total number of fine grain cells with no null values
rather than by 4level(c) (the total number of fine grain cells
corresponding to c).

7.3. Experimental Results
Figures 3 and 4 show visualized data of the total num-

bers of evacuees at the time segments T1and T2 respec-
tively. They represent input data for the internal process-
ing of the difference operator. These figures show that
as compared with the distribution of evacuees at the time
segment T1, the total number of evacuees at the time seg-
ment T2 is smaller and is differently distributed. However,
a simple comparison of the two figures barely reveals any
specific changes between them. Therefore, these two ar-
ray data are subjected to difference processing to analyze
the actual changes.

Figure 5 displays directly obtained differences in the
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Fig. 5. Direct differences at time segments T1 and T2.

values of the two time segments. It shows detailed data
than but is a little too finely grained to grasp an overall
trend of mass evacuations.

Figures 6, 7 and 8 show the results of difference his-
tograms with B = 20, B = 50 and B = 100, respectively.
The results of the difference operator are visualized by
heat maps.

In Fig. 5, the parts with significant difference values are
first filtered with a minimum bounding box before con-
structing histograms that approximate their overall trends.
Basically, the larger the number of cells B, the more ap-
proximated will be the results of difference histograms to
actual data distributions. However, for the sake of visual-
ization, cells with similar trends are displayed integrally
and the parts with more remarkable differences are high-
lighted by histograms. For example, the histogram results
in Fig. 6 show the regions where the evacuees have most
increased or decreased. If analyzers want to obtain more
detailed information, they can just increase the value of B
and return the histograms for the system to process. Be-
cause the more cells do not always generate better visual-
ization effects, analyzers should carry out interactive anal-
yses by coordinating object regions and settings of B until
they can obtain useful information. For instance, as in
Fig. 8 (B = 100), the central part is not clearly displayed
when B has a large value. In such cases, analyzers can
iterate the difference operator limited to the green rectan-
gular region R1 for the number of cells B = 100. Then
the difference histograms limited to the region R1 can be
obtained as shown in Fig. 9, from which more detailed
difference distributions can be understood. Thus, the ap-
proach proposed in this paper proves to be capable of de-
tecting remarkable differences in any local, large differ-
ences by seeking difference histograms of limited regions
and visualizing them as an enlarged view.

Figure 10 shows the processing time of the difference
operator. Red and green lines indicate the execution time
from the query execution till the end of the difference
operator and till their display, respectively. The execu-
tion time indicated by the green line includes not only the
query execution time but also the time for subsequent vi-
sualization processing. As can be seen from Fig. 10, the
larger the number of cells B, the longer the processing
time of the difference operator. A comparison of the two
lines shows that the overhead time for visualization pro-
cessing is not so large.

Fig. 6. Results of the difference operator (B = 20).

Fig. 7. Results of the difference operator (B = 50).

Fig. 8. Results of the difference operator (B = 100).

Fig. 9. Results of the difference operator limited to region
R1 (B = 100).
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Fig. 10. Processing time of the difference operator.

8. Discussions and Summary

In order to realize sophisticated analytical functional-
ities, we proposed the difference operator to detect any
differences in simulation data with spatio-temporal char-
acteristics. We analyzed the requirements for such dif-
ference operators and proposed an approach to construct
difference histograms. We also visualized the implemen-
tation of such difference operator, taking advantage of
SciDB, an array-oriented DBMS. We discussed the effec-
tiveness of the difference operator on the visualization re-
sults from the experimental results. As for the efficiency
of the proposed approach, its processing time is approxi-
mately 2s if the total number of cells B is not very large
(less than or equal to 100). A small overhead for the vi-
sualization processing proves that the proposed approach
can enable interactive analyses.

The difference operator proposed in this paper assumes
that users specify two time segments T1 and T2. Such an
approach, however, is applicable only when the time seg-
ments to be specified by users are known in advance. For
more useful and evolutionary approaches, it could be ex-
tended as follows:

1) Users can only specify the regions subject to anal-
yses and the time segment width τ as an aggregate
unit. The data sets can be aggregated in each time
segment width τ and a sequence of aggregate results
T1,T2, . . . ,Tm can be constructed. Then, any differ-
ences between Ti+1 and Ti (1 ≤ i ≤ m− 1) are de-
termined and the top k pairs are selected in order of
difference size from the largest one. In other words,
selecting k pairs in order of the value of differences
that users need to notice could effectively help users
save their analyzing burden.

2) Similar to the above-mentioned idea, we have the
following: 1) for selecting pairs by comparing two
adjacent time segments, select top k pairs by compar-
ing the trend of each time segment Ti (1≤ i≤m with
that of the entire time segment as an alternative. In
other words, pairs are selected on the degrees of de-
viation from the general trend rather than on changes
at a certain point.

The above-mentioned approaches for extended opera-
tions, particularly approach 1), involve high costs. There-
fore, we need to review how to reduce the involved costs.

As for time segments τ , instead of user’s arbitrary se-
lections, users could alternatively be allowed to select
only powers of 2 such as 1,2,4,8 and so on in the same
way as that for spatial data. In such cases, if object data
are static, they can be aggregated in advance, using the
data warehouse technology [13] to reduce the processing
time for executing the difference operator. That should be
a realistic solution for realizing interactive processing.

Another future issue required to be addressed could be
a semantic extension of the difference operator. Although
in this study we have simply noticed nothing but the dif-
ference sizes, we hope to develop the difference operator
on information such as whether differences have an in-
creasing tendency or a decreasing one and the speeds at
which they increase or decrease. The way to visualize
such differences is another important matter of consider-
ation. Therefore, we intend to review how to visualize
them. We also plan to develop an implementation technol-
ogy making the most of the functions of the array-oriented
DBMS.
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[4] L. Gómez, B. Kuijpers, and B. Moelans, “A survey of spatio-
temporal data warehousing,” International Journal of Data Ware-
housing and Mining, Vol.5, No.3, pp. 28–55, 2009.

[5] Y. Ioannidis, “The history of histograms (abridged),” In VLDB, pp.
19–30, 2003.

[6] Y. Ishikawa, “Research trend and future prospects for large-
scale data analytics,” IEICE Trans. on Information and Systems
(Japanese Edition), J97-D(4), pp. 718–728, 2014 (in Japanese).

[7] L. Leonardi, G. Marketos, E. Frentzos, N. Giatrakos, S. Orlando,
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