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Earthquake-induced building damage assessment is
an indispensable prerequisite for disaster impact as-
sessment, and the increasing availability of high-
resolution Synthetic Aperture Radar (SAR) imagery
has made it possible to construct damaged building in-
ventories soon after earthquakes strike. However, the
shortage of pre-seismic SAR datasets and the lack of
available building footprint data pose challenges for
rapid building damage assessment. Taking advantage
of recent advances in machine learning algorithms,
this study proposes an object-based building dam-
age assessment methodology that uses only post-event
SAR imagery. A Random Forest machine learning-
based object classification, a simplified approach to
the extraction of built-up areas, was developed and
tested on two ALOS2/PALSAR-2 dual polarimetric
SAR images acquired in affected areas soon after the
2015 Nepal earthquake. In addition, a series of tex-
ture metrics as well as the random scattering metric
and reflection symmetry metric were found to signifi-
cantly enhance classification accuracy. The feature se-
lection was found to have a positive effect on overall
performance. Moreover, the proposed Random Forest
framework resulted in overall accuracies of 93% with
a kappa coefficient of 0.885 when the object scale of 60
××× 60 pixels and 15 features were adopted. A compar-
ative experiment with the k-nearest neighbor frame-
work demonstrated that the Random Forest frame-
work is a significant step toward the achievement of
a balanced, two-class classification.

Keywords: 2015 Nepal earthquake, object-based build-
ing damage assessment, post-event dual-polarimetric
SAR imagery, Random Forest machine learning algo-
rithms

1. Introduction

Natural disasters, especially earthquakes, are rapid and
extreme events that result in significant losses of life and
damage to property. During the period 2001∼2011, disas-

ters caused more than 780,000 deaths and earthquakes ac-
counted for nearl 60% of all disaster-related casualties [1].
More than a million earthquakes occur worldwide every
year, approximately two earthquakes per minute. Rapid
and effective earthquake disaster estimation enables gov-
ernments to make better responses to disasters. However,
such rapid estimation is still a challenge faced by govern-
ments and experts alike [2]. The estimation of earthquake-
induced building damage was initially achieved by inte-
grating the manual visual interpretation of high-resolution
satellite images and field work [3, 4]. Despite its relatively
high accuracy, the applicability of this technique is highly
restricted by its time-consuming nature. To mitigate the
disadvantages of manual interpretation, a series of quick,
automatic building-damage estimation approaches from
multitemporal optical images [5, 6] and SAR image [7–
9] have been proposed. However, as these methodologies
are based on change detection techniques using multitem-
poral images, cloud cover effects and the lack of suitable
pre-event archives pose immense challenges for any mul-
titemporal image-based mapping approach or optical re-
mote sensing technique. This fact has been highlighted
by large events such as the 2015 Gorkha earthquake in
Nepal, the 2009 LÁquila earthquake in Italy, and the
2008 Wenchuan earthquake and 2010 Yushu earthquake
in China.

Under the circumstances, the exploitation of building
damage assessment using only post-event SAR remote-
sensing images has garnered broad attention and has al-
ready demonstrated its preliminary potential for build-
ing damage assessment [10–12]. The approaches that
have been proposed can be generally classified into pixel-
based and object-based techniques, and they often make
use of ancillary datasets such as building footprint data.
Since the pixel-based techniques [12] mainly rely on the
backscattering coefficient signal of individual pixels, the
results are easily affected by speckle effects. To ad-
dress such issues, a novel strategy, object-based analy-
sis, has come to be used for building damage classifica-
tion. However, critical challenges still exist when only
a single, carefully-selected feature is used for classifica-
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Table 1. Characteristics of ALOS-2/PALSAR-2 images used for this study.

Date Polarization Spatial Resolution Off-nadir angle Pass Range direction Level
2015/05/02 HH+HV 10m(Fine) 32.5◦ Ascending Right SLC
2015/04/26 HH+HV 3m(Ultrafine) 44.7◦ Ascending Right GRD

Fig. 1. Location of study area in Kathmandu, Nepal.

tion [12, 13]. In addition, the great variety of types of
building damage and the available types of remote sens-
ing imagery (imagery acquisition conditions and polariza-
tion types) largely limit the transferability of the proposed
methods and the development of operational workflows.

Recently, a machine learning algorithm which utilizes
high-dimensional features has played an important role in
the remote sensing field [14]. The machine learning al-
gorithms in particular, such as Random Forest (RF) [15],
have demonstrated excellent performance in the analyses
of many complex, remote sensing datasets [16–18]. Ma-
chine learning algorithms have also been successfully ap-
plied to land cover mapping [19] and volcanic deposits
mapping [20] using SAR imagery. However, limited re-
search has been carried out on earthquake-induced build-
ing damage mapping in this field, so little is known about
the robustness or applicability of building damage map-
ping using machine learning algorithms and object-based
mapping techniques. Thus, the objective of this study
was to develop a building-damage assessment methodol-
ogy using only post-event SAR imagery by integrating the
RF machine learning algorithm and object-based analysis
techniques.

2. Study Area and Datasets

The area studied in this research is located in the
Kathmandu valley, including the towns of Sankhu and
Bhaktapur, as shown in Fig. 1. This was one of the
most devastated areas in the 2015 Nepal earthquake. In
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Fig. 2. ALOS-2/PALSAR-2 data used in this study. (a) and
(b) are the HH and HV backscattering coefficient image cal-
culated from ALOS-2/PALSAR-2 image acquired on April
26, 2015. (c) and (d) are the HH and HV backscattering
coefficient image calculated from the ALOS-2/PALSAR-2
image acquired on May 2, 2015.

this event, 67,871 fully-damaged buildings and 73,624
partially-damaged buildings were reported in the Kath-
mandu valley [21].

The data used in this study includes two L-band ALOS-
2/PALSAR-2 dual-polarization (HH/HV) datasets, the de-
tails of which are summarized in Table 1. The GRD [22]
dataset, acquired on April 26, 2015 with a spatial reso-
lution of 3 m, was used as the main data source of this
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Fig. 3. Flowchart summarizing the processing steps for building damage mapping.

research because of its high resolution. However, as the
GRD data are represented by amplitude data and do not
contain the phase information that can be used for polari-
metric information extraction, another Single Look Com-
plex (SLC) dataset, acquired on May 2, 2015 with a 10 m-
resolution, was employed as a substitute.

First, the SLC data were multi-looked (6 looks in
azimuth and 3 looks in range) and geocoded using
ENVI/SARscape 5.2 software. Together with the GRD
dataset, radiometric calibration was performed to get a
backscattering coefficient in decibel (dB) units. Then,
the enhanced Lee filter (3 × 3) was applied to reduce
the speckle effect. All the images for the co-polarization
(HH) and cross-polarization (HV) data are shown in
Figs. 2(a, b, c, d).

3. Methodology

First, a simplified speckle divergence-based methodol-
ogy was proposed to extract the built-up area (BA), and
then the BA shape was split up into multi-scale size to
generate the object ground truth data (GTD). Then, a com-
prehensive set of metrics, including 15 polarimetric, 83
texture, and 4 color metrics, was calculated.The metrics
were integrated with the object ground truth data to con-
struct the database for classification. Finally, a Random
Forest (RF) machine learning approach was introduced,
and bootstrap-sampling-based out of bag (OOB) testing
was used for the accuracy evaluation and grading of the
variable importance score. The steps of the process are
shown in detail in Fig. 3.

3.1. Simplified Object-Based BA Extraction
In this paper, the methodology for BA extraction was

developed based on the method proposed by [23]. In ac-
cordance with [23], ten thresholds were used to extract
the BA, although this greatly increases the complexity of
building extraction and is not conducive to real disaster
emergency responses. However, we aimed at developing
a simplified technique for quick BA extraction based on
one single-polarized ALOS-2/PALSAR-2 SAR intensity
image. The procedure consists of two main steps: 1) the
speckle divergence image calculation, and 2) the object-
based mapping of BA.

3.1.1. Speckle Divergence Calculation
In this paper, the ultrafine stripmap SAR intensity data

shown in Fig. 4(a) were employed to generate the speckle
divergence image. In order to determine the best window
size for the calculation of the speckle divergence image,
the building sizes in Kathmandu were analyzed based on
the available building footprint data (125,314 buildings),
and the results showed that most of the buildings were
within 225 m2. Ideally,this size is equal to 5 × 5 pixels
window size in the corresponding SAR image, but the ac-
tual window size should be larger than 5 × 5 pixels due
to the complexity of the building shapes. Finally, the 9
× 9-pixel window size was adopted as the optimal win-
dow size used in calculating the speckle divergence im-
age, as shown in Fig. 4(b). This is because using a win-
dow size smaller than 7 × 7 pixels cannot guarantee that
most kinds of buildings can be completely represented in
such a small patch image. Using a window size larger
than 11 × 11 pixels would decrease the precision of spa-
tial localization [23].
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Fig. 4. Result of built-up area extraction. (a) The original SAR intensity image. (b) Speckle divergence image
(c) Result of multiresoultion segmentation. (d) Extracted built-up areas. The yellow rectangle is the area used
for accuracy assessment of extracted built-up areas.

3.1.2. Object-Based BA Extraction

The first step in BA extraction is image segmentation,
for which we used the multiresolution segmentation algo-
rithm provided by eCognition software. The segmenta-
tion was performed using the speckle divergence image
that originated from the ultrafine stripmap copolarization
SAR intensity image (26 April 2015,07:01:53 UTC). A
series of segments were generated as shown in Fig. 4(c).
The parameter settings for segmentation are as follows:
scale parameter, 10 × 10 pixels; shape, 0.1; color, 0.9;
smoothness, 0.5; and compactness, 0.5. Based on the im-
age segmentation, the next goal is to develop a simple rule
base for extracting the BA areas. Assuming that all BAs
include segments with high brightness, the key point is
to determine the best threshold value (T ), based on the
brightness value of the speckle divergence image within
the segments used for the extraction of the BA. Several
threshold values from 0.1 to 0.7 were tested. The de-
tected BAs were visually compared with the BA in the
optical image, and the threshold T = 0.5 was selected for
the extraction of the candidate BA because it showed the
best performance. Next, a region merge algorithm was
employed to merge all the above extracted segments to
produce bigger segments, and then all the small, isolated
segments were removed. The final BA can be seen in
Fig. 4(d).

3.2. Generation of Block Object Ground Truth
Data

Regarding the building damage classification using
only post-event SAR imagery, the basic idea is to iden-
tify the differences between damaged buildings and un-
damaged buildings, based on the radar scattering charac-
teristics in the same single-phase image. This is quite dif-
ferent from the principle of change-detection-based build-
ing damage assessment. It is very important to carry out
the building damage classification on the block scale by
grasping the overall characteristics of the affected build-
ings instead of on the single building scale within its
building footprint area. The reasons are as follows. 1)
Due to the variety of types of earthquake-induced damage
to buildings, the backscattering coefficient values will be
different not only within the building footprint outline but
also in the neighboring pixels. 2) Due to the side-looking
effect of radar observation, the shadow areas and the lay-
over areas outside of the building footprint contain more
useful information on the type of building damage. the
backscattering coefficient value will change most signif-
icantly in those areas where the buildings are totally de-
stroyed. Therefore, block-based building damage assess-
ment was adopted in this paper with the aim of solving
the limitation of damage assessment on a single-building
scale. The scales of the block object directly influence the
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Fig. 5. Result of block object ground truth data (GTD) generation. (a) Study area and the extracted built-up areas.
(b) The three classes for individual building scale as GTD [24]. (c)-(i) The block-scale object GTD in 15 × 15
pixel, 20 × 20 pixel, 25 × 25 pixel, 30 × 30 pixel, 45 × 45 pixel, 60 × 60 pixel,90 × 90 pixel respectively.

final accuracy of building damage assessment. To evalu-
ate the impact of changing scales on the building dam-
age class separability, block object was calculated at 7
different scales (15 × 15 pixels, 20 × 20 pixels, 25 ×
25 pixels, 30 × 30 pixels, 45 × 45 pixels, 60 × 60 pix-
els, and 90 × 90 pixels). First, we used a value of 1515
pixels for the generation of tile-based block object, and
then we gradually increased this value. Subsequent to the
BA area extraction shown in Fig. 5(a), the 3-class GTD
of affected buildings, shown in Fig. 5(b) and provided
by the United Nations Institute for Training and Research
(UNITAR) Operational Satellite Applications Programme
(UNOSAT), was extrapolated to create a sample database
with all objects assigned either as damaged building block
(DBB) or undamaged building block (UBB). Block ob-
jects containing at least one damaged building (destroyed,
severely damaged, and/or moderately damaged building)
was labeled as DBB and all others as UBB. The results
of the building block GTD (15 × 15 pixels) are shown in
Fig. 5(c). The same method was applied to the blocks of
other scales (20 × 20 pixels, 25 × 25 pixels, 30 × 30 pix-
els, 45 × 45 pixels, 60 × 60 pixels, and 90 × 90 pixels)
to generate the multiscale building block GTD as shown
in Figs. 5(d)-(i).

3.3. Calculation of Image Object Metrics

This section presents all the metrics used in this study.
The metrics were calculated within the building block ob-
tained in the previous step. In addition to the frequently
used co-polarization backscattering coefficient, three new
polarimetric features were calculated per image object:
cross-polarization backscattering coefficient, cross polar-
ization ratio, and modified total scattering power. The
cross-polarization ratio (CPR) was defined as the ra-
tio between cross-polarization (σHV ) and co-polarization
(σHH). The modified total scattering power (SPAN∗),
which represents the brightness of an illuminated object,
was defined as the sum of the scattering power of co-
polarization and cross-polarization. The dualpolarimet-
ric ALOS2/PALSAR2 data can be represented in forms
of the covariance matrix (C2). By applying the H-2-
alpha decomposition [25], we calculated the dual-pol tar-
get parameters entropy (H), anisotropy (A), alpha angle
(α), and Shannon entropy [26]. Also, by performing the
Raney decomposition [27], we obtained the modified dou-
ble bounce scattering (Dbl), odd scattering (Odd), and
random scattering (Rnd). In addition, the reflection sym-
metry metric, which represents the unnormalized correla-
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Table 2. Overview of features used to identify earthquake induced building damage adopted in this study.
Number marked with star indicates the number of features calculated from the ALOS-2/PALSAR-2 image
acquired on May 2, 2015.

Tested features Number of features
Entropy,Anisotropy,alpha, Shannon entropy 4∗

Backscattering coefficient (σ∗
HH ,σ∗

HV ),〈SHV S∗HH〉,〈SHHS∗HV 〉 4∗
Polarimetric RaneyRnd , RaneyOdd , RaneyDbl 3∗

Backscattering coefficient (σHH ,σHV ) 2
Cross polarization ratio(CPR), SPAN 2

GLCM0◦.HH.(Mean,Cor.,Con.,ASM,MP,Var.,Hom.,Ene.,Dis.) 9
GLCM45◦ .HH.(Mean,Cor.,Con.,ASM,MP,Var.,Hom.,Ene.,Dis.) 9
GLCM90◦ .HH.(Mean,Cor.,Con.,ASM,MP,Var.,Hom.,Ene.,Dis.) 9
GLCM135◦ .HH.(Mean,Cor.,Con.,ASM,MP,Var.,Hom.,Ene.,Dis.) 9
GLCM0◦ .HV.(Mean,Cor.,Con.,ASM,MP,Var.,Hom.,Ene.,Dis.) 9

Texture GLCM45◦ .HV.(Mean,Cor.,Con.,ASM,MP,Var.,Hom.,Ene.,Dis.) 9
GLCM90◦ .HV.(Mean,Cor.,Con.,ASM,MP,Var.,Hom.,Ene.,Dis.) 9
GLCM135◦ .HV.(Mean,Cor.,Con.,ASM,MP,Var.,Hom.,Ene.,Dis.) 9

GHHH.(DataR.,Var.,Ske.,Mean) 4
GHHV.(DataR.,Var.,Ske.,Mean) 4

GaborHH , GaborHV 2
Speckle divergence 1

Color Hue, Saturation, Value, Light 4

tion between co-polarization and cross-polarization, was
used in this study [27, 28].

To quantify surface textures, a variety of derivatives
of the gray level co-occurrence matrix (GLCM) that
had been evaluated in previous earthquake-induced build-
ing damage assessment studies were adopted for this
study. These are contrast (Con.), correlation (Cor.), en-
ergy (Ene.), angular second moment (ASM.), maximum
probability (MP.), variance (Var.), homogeneity (Hom.),
dissimilarity (Dis.), and mean. The open source sen-
tinel toolbox [29] was used in this study to calculate
GLCM features at directions of 0◦, 45◦, 90◦, 135◦ for
co-polarization and cross-polarization, respectively. The
Gabor filter-based features [30] and occurrence Matrix-
based texture features (data range, variance, skewness,
and mean) (Anys et al., 1994). as well as speckle diver-
gence [23] were also taken into account for this evalua-
tion.

With the development of high-resolution polarimetric
SAR imaging techniques, it is available for us to obtain
color information from the pseudo-color or false color of
polarimetric SAR images. The application of color fea-
tures follows the same concept as the texture features by
exploiting statistical properties and the relationship within
a pixel window. More importantly, the color information
represented in false color polarimetric images has already
provided promising results in earthquake-induced land-
slide mapping [31] and other applications [32]. There-
fore, we considered integrating the color features de-
rived from the most famous hue saturation-value/intensity
(HSV) color space model and hue-light-saturation (HLS)
color space model to build damage assessment. Consid-
ering dual-pol SAR data, the two polarization backscat-
tering coefficient images were used to directly generate
pseudo color imagery. The color composite in the im-

age represents σHH in red, σHV in green, and σHH /σHV in
blue. Together with the texture metrics and polarimetric
metrics, a total of 102 features were calculated for the ul-
trafine mode SAR imagery and fine mode SAR imagery,
respectively (Table 2).

3.4. Random Forests
The Random Forest machine learning algorithm has al-

ready been demonstrated to be powerful in fields such
as biomedicine [33, 34], environmental engineering [16,
17], and Earth observation [35, 36] since the concept of
ensemble decision trees was proposed [37]. The perfor-
mance of the traditional decision tree is highly dependent
on the dataset and often generates rather low classification
accuracies [38] due to the complexity of remote sensing
data. However, the RF algorithm classifies by generating
a number of decision trees. It does this based on bootstrap
sampling and random feature combinations strategy [37],
which greatly increases the robustness and performance
of classification. In this work, we mainly used the Ran-
dom Forest tools implemented in the Salford Predictive
Modeler software [39].

Damaged buildings accounted for only minor fractions
of our test area, as is common after earthquake disasters.
This situation leads to an imbalance between DBB and
UBB, and it potentially introduces a bias towards the over-
representation of UBB in the classification. Such biases
are undesirable in earthquake damage mapping because
an overestimation or underestimation of the affected ar-
eas will generally mislead the disaster response and the
associated hazard and risk assessments. To alleviate the
error induced by class imbalance, a balanced class weight
which increases the weighting of small classes to equal
that of the largest target class was adopted. To quanti-
tatively rank the contribution of different features in the
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Source: Esri, DigitalGlobe,
GeoEye, Earthstar Geographics,
CNES/Airbus DS, USDA, USGS,
AEX, Getmapping, Aerogrid, IGN,
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Source: Esri, DigitalGlobe,
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Fig. 6. The process of accuracy validation for the extracted BA areas. (a) VHR optical image. (b)
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Visually interpreted BA results in the whole evaluation area. (e) The automatic extracted BA (segments)
in evaluation area. (f) Magnified BA (segments) in example A. (g) Interpolated BA blocks in example
A. (d) Interpolated BA blocks in the whole evaluation area.

final damage classification, a RF-based variable impor-
tance (VI) [40] was employed to assess the metrics at the
same test site on 7 different scales.

4. Results and Discussion

4.1. BA Extraction Accuracy Assessment

To validate the accuracy of the extracted BA, an area
located in the southeast of the study area was selected for
quantitative assessment, as seen in Fig. 4(d). The GTD of
the BA was constructed based on the visual interpretation
of the VHR optical image, provided by DigitalGlobe and
shown in Fig. 6(a). First, the evaluation area was split into
60 × 60-pixel grid objects (Fig. 6(e)), and the visual inter-
pretation was performed for each object. An object was
identified as a BA if numerous buildings were observed
within it; otherwise, the object was identified as a non-
BA. One example of the interpretation process is shown
in Figs. 6(b) and 6(c), and the interpreted BA in the eval-
uation area is shown in Fig. 6(d). For comparison with
the GTD of the BA, we interpolated, using the proposed
method, the automatic extracted BA (see Fig. 6(e)) into a
60 × 60-pixel grid object scale, as seen in Fig. 6(h). All
the 60 × 60-pixel grid objects that interact with the auto-
matic extracted BA were classified as a BA. One example

of the interpolation process can be seen in Figs. 6(f) and
6(g).

The accuracy assessment is summarized in Table 3 and
Fig. 5. The results show that the BA was identified with
an overall accuracy of 90.7% and a kappa coefficient of
0.776 for the validated areas. For the test site, promis-
ing results were achieved while errors occurred mainly in
the context of BA which were highly interspersed with
bridges, parks, and greenhouses. This is because the scat-
tering characteristics of the dispersive objects are quite
similar to those of the BA, so the dispersive objects are
easily misclassified. However, since those objects only
constitute a small part of the total study area, it can be
said that the model worked well.

4.2. Variable Importance Ranking and Effects of
Scale on Classification Accuracy

Variable importance provides us with a simple way
to compare the contribution of different features derived
from the SAR image for classification accuracy, and this
can also help us to analyze the causal relationship between
SAR image characteristics and the type of building dam-
age. Unsurprisingly, features related to polarimetric infor-
mation and texture information turned out to be the most
important ones for all test scales (Table 4). The random
scattering metric (RaneyRnd) that depicts the scattering re-
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Table 3. Accuracy assessment of the extracted built-up area (BA).

Classified result
BA block Non-BA block Total P.A.(%)

BA block 1370 28 1398 97.8
GTD Non-BA block 164 506 670 75.5

Total 1534 534 Kappa coefficient=0.776
U.A.(%) 89.3 94.8 Overall accuracy=90.7%

Table 4. The 20 object metrics with the highest average variable importance rank among four tested scales. Blue fonts represent
color metrics, green fonts represent polarimetric metrics, and the black fonts represent texture metrics.

15×15 pixel) 30×30 pixel 60×60 pixel 90×90 pixel
Feature Score Feature Score Feature Score Feature Score

RaneyRnd 100.0 〈SHV S∗HH〉 100.0 GLCM135◦.HH.MP 100.0 σHH 100.0
CPR 87.6 σHH 95.3 GaborHH 19.4 GLCM0◦.HV.MP 57.9

Anisotropy 75.2 〈SHHS∗HV 〉 86.8 〈SHHS∗HV 〉 12.1 GLCM45◦.HV.Vari 54.9
light 75.2 RaneyRnd 51.4 GaborHV 11.1 RaneyRnd 54.5

〈SHV S∗HH〉 71.2 EntropyShannon 38.4 σHH 10.2 GLCM0◦.HV.Mean 53.6
GaborHH 69.0 GaborHH 36.3 σHV 8.0 GLCM90◦.HV.Vari 52.4

Vaule 62.6 GLCM45◦.HV.Mean 34.8 RaneyRnd 7.0 〈SHHS∗HV 〉 51.4
σHH 61.2 GLCM135◦.HV.Mean 35.3 〈SHV S∗HH〉 7.0 GHHV.Vari 45.8

GLCM45◦.HH.ASM 60.1 GLCM90◦.HV.Mean 31.7 GLCM45◦.HH.MP 6.5 GHHV.DataRange 45.8
GLCM0◦.HH.Homo 55.5 GLCM0◦.HH.Corre 30.2 GLCM135◦.HV.Vari 6.4 GLCM0◦.HV.ASM 44.4

σ∗
HV 53.4 GLCM90◦.HV.Corre 27.2 GHHV.Vari 6.4 GaborHH 44.2

RaneyDbl 52.9 GLCM0◦.HV.Mean 25.0 EntropyShannon 6.3 GLCM90◦.HV.MP 43.4
GLCM0◦.HH.MP 52.7 σHV 25.6 GLCM0◦.HH.MP 5.8 GLCM90◦.HV.Mean 41.0

Entropy 50.1 RaneyOdd 26.8 GHHV.Mean 5.8 GLCM90◦.HV.Energy 40.2
GLCM45◦.HH.Homo 45.3 GLCM135◦.HH.Mean 26.4 GLCM90◦.HH.MP 5.5 GLCM0◦.HV.Homo 40.1

RaneyOdd 43.6 GaborHV 26.7 GLCM90◦.HV.Mean 5.1 GLCM45◦.HV.MP 39.4
GLCM0◦.HH.Corre 41.7 RaneyDbl 23.7 GLCM90◦.HV.Vari 4.9 GLCM0◦.HV.Energy 39.0
GLCM0◦.HH.ASM 38.3 σHV 22.6 GLCM0◦.HV.MP 4.9 GLCM135◦.HV.Vari 38.8

GLCM45◦.HH.Mean 37.6 GLCM90◦.HV.Corre 21.3 GLCM90◦.HV.MP 4.9 GHHV.Mean 37.8
〈SHHS∗HV 〉 37.6 GLCM0◦.HV.Vari 21.4 GLCM135◦.HH.ASM 4.6 GLCM135◦.HH.ASM 37.1

sponse from the randomly distributed targets showed a
particularly high variable importance (VI) value. The re-
flection symmetry metric (SHV S∗HH) also contributed sig-
nificantly to the classification accuracy, which indicates
that the reflection symmetry characteristics of the DBB
and the UBB are different. However, in most cases, their
relative variable importance increased with larger block
scales (Table 4). In general, GLCM MP., Mean., Vari.,
Homo., and Corri., also had relatively high VI values.
However, the VI rankings of the most important textural
features exhibited a large degree of variability among the
different block scales. The co-polarization-guided GLCM
MP., ASM., to reduce the OOB error in the 15 × 15-pixel
scale and 60 × 60-pixel scale tests, and it largely outper-
formed the cross-polarization-guided GLCMs. The cross-
polarization-guided GLCMs Vari. and Mean. helped to
reduce the OOB error in the 30 × 30-pixel scale and 90
× 90-pixel scale tests, and they largely outperformed the
co-polarization-guided GLCMs. Furthermore, the rank-
ing of the texture features increased along with the in-
crease in block scales, indicating that the texture infor-
mation makes it easier to distinguish the damaged blocks
in the larger scales. Although the optimal choice of the

texture measures depends to a certain degree on the ap-
plication, it is interesting to note that previous research
highlighted the co-polarization-guided GLCMs Homo.,
Vari., and Ent. as particularly useful features for collapsed
building identification [12, 41]. The present study showed
that the cross-polarization-guided GLCMs are even more
useful and should therefore be considered.

Color features displayed rather contrary behavior and
generally contributed little to increased classification ac-
curacy. Only for smaller block scales, which have blocks
that are closer to the size of a single building, the light
and value features were selected by the selection proce-
dure. The color information has been reported to signifi-
cantly improve the accuracy of polarization SAR classifi-
cation [32] and to be useful in landslide detection [31], but
it provided little additional information within the tested
sample-based framework. On the whole, the abilities of
the texture and color features to distinguish were not as
good in this study as those of the polarimetric features.
One possible reason is that the scattering process of radar
is very sensitive to varieties in the orientation, size, and
shape of buildings, and the difference of buildings with
different damage degree represented in SAR image is dif-
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Fig. 7. The effect of block scale on the final accuracy of
building damage assessment.

ficult to describe using a simple visual model due to the
limitation of the relatively low resolution of SAR images.

On the other hand, the effect of block scale on classifi-
cation accuracy was also investigated, as shown in Fig. 7,
in order to find an optimum block scale for building dam-
age classification. The results show that the scale of 60 ×
60 pixels has the best performance, with an overall accu-
racy of 85.8% and a kappa coefficient of 0.5. This is also
in accordance with our previous assumption. The reasons
are as follows. 1) The ideal block object should contain
a number of buildings and the interstitial area between
buildings so that the typical radar scattering behavior may
be grasped from the viewpoint of block level. However,
the small scale block object may only be able to contain
the radar scattering information of pure buildings or pure
interstitial area between buildings, which will decrease
the accuracy of block object classification. Satisfying re-
sults can be achieved if the damage is assessed with a big-
ger size of block object, somehow averaging the unreli-
able results of small-scale block objects. 2) Larger object
scales generally generate fewer and larger-sized sample
objects, and the precision of the block-object GTD will
decrease along with the increase of the object scale. Based
on these two reasons, the medium-scale object (60 × 60
pixels) can balance the radar scattering characterization
and the block-object GTD precision, and it had the best
results.

4.3. The Effects of Variable Number on the Classi-
fication Accuracy

Developing a model with high classification accuracy
is possible by utilizing many kinds of features. However,
the applicability of this strategy is restricted by the high
redundancy and time costs. For real applications such as
quick disaster response, exploring the optimal strategy
of achieving the ideal result using the smallest set of
features is important. Based on the above mentioned
variable importance ranking, a predictive accuracy

Fig. 8. Evaluation of feature reduction using block-object
scales of 15 × 15, 30 × 30, 60 × 60, and 90 × 90 pixels.

Datasets

Training subsets 1
(67% datasets)

Training subsets 2
(67% datasets)

Training subsets 499
(67% datasets)

Training subsets 500
(67% datasets)

Tree 1

10 random features

Tree 2

10 random features

Tree 499

10 random features

Tree 500

10 random features

Testing subsets1
(33% datasets)

Testing subsets 2
(33% datasets)

Training subsets 499
(33% datasets)

Training subsets 500
(67% datasets)

…

…

…

Prediction 1
(33% datasets)

Prediction 2
(33% datasets)

Prediction 499
(33% datasets)

Prediction 500
(33% datasets)

…

Majority voting

Classification

Fig. 9. The flowchart of random forest algorithm used in
this study for accuracy assessment.

assessment was performed by employing a gradually
decreasing number of features. As shown in Fig. 8,
on average, only about one-fifth of the pre-selected
features were detected as useful, and the OOB error
reached a minimum when 15 features were used in a 60
× 60-pixel scale. The 15 features are the top 15 features
for the 6060 pixels in Table 4, namely, GLCM135◦.HH.MP,
GaborHH , 〈SHHS∗HV 〉, GaborHV , σHH , σHV , RaneyRnd ,
〈SHV S∗HH〉, GLCM45◦.HH.MP, GLCM135◦.HV.Vari,
GHHV.Vari, EntropyShannon, GLCM0◦.HH.MP, GHHV.Mean,
GLCM90◦.HH.MP, respectively. In most cases, the OOB er-
ror remained basically stable or increased if all variables
were used. In the tests involving the 60 × 60-pixel and
90 × 90-pixel scales in particular, many of the features
provided only minor further enhancements or were even
detrimental. More importantly, the test revealed that
even a small number of variables are also capable of
achieving high accuracy; most of the preselected features
are redundant or provide limited useful information and
should therefore be excluded.
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Table 5. Accuracy assessment results for the Random Forest classifier.

Random Forest classifier
UBB DBB Total P.A.(%)

UBB 4691 320 5011 93.6
GTD DBB 36 528 564 93.6

Total 4727 848 Kappa coefficient=0.885
U.A.(%) 99.2 62.2 Overall accuracy=93.6%

Table 6. Accuracy assessment results for the k-nearest neighbor classifier.

k-nearest neighbor classifier
UBB DBB Total P.A.(%)

UBB 4922 89 5011 98.2
GTD DBB 383 181 564 32.1

Total 5305 270 Kappa coefficient=0.40
U.A.(%) 92.8 33.0 Overall accuracy=91.5%

4.4. Accuracy Assessment

In this study, we did not manually determine the train-
ing sample or areas because the final accuracy would be
highly affected by a manually selected training sample.
In order to avoid this uncertainty, we employed bootstrap
sample-based out of bag (OOB) testing to create the train-
ing sets and validation sets automatically. The number of
trees (t) and the number of features used to divide in each
node (n) in this study were empirically set to 500 and 10,
respectively. 10 features from Table 4 were randomly se-
lected for the construction of decision tree 1, 63% of the
original datasets were randomly selected as the training
sets, and the remaining 37% datasets were used as test
sets. This process was independently repeated 500 times
to construct 500 trees. The prediction of each validation
dataset from each independent test was used for a major-
ity vote to get the final predication. The details of the
Random Forest algorithm can be seen in Fig. 9. It has
already been widely acknowledged that the results of the
OOB testing are much more reliable and stable than when
the traditional manual sample selection process is used.
According to the above analysis, the 60 × 60-pixel scale
with 15 features generates the best performance, so it was
selected for accuracy assessment. In order to demon-
strate the superiority of the RF model for classification,
the widely used k-nearest neighbor classifier (KNN) was
also tested for comparison. In the confusion matrix shown
in Tables 5 and 6, it is easily seen that for the RF mod-
els, overall accuracy (93.6%) and the kappa coefficient
(0.71) are higher than those for the KNN model (91.5%
and 0.40, respectively). A significant underestimation of
damaged blocks was observed in the KNN model. In con-
trast, the soft decision of the RF classifier showed a sig-
nificant improvement and yielded balanced results. If one
compares the GTD map (Fig. 10(a)), the RF model-based
damage map (Fig. 10(b)), and KNN model-based dam-
age map (Fig. 10(c)), one can easily see that the building
blocks in the southern part of our study area are overesti-
mated as damaged building blocks. The building density
in the misclassified areas is much lower than that in the

correctly classified areas. Thus, the radar characteristic is
quite different from that in the correctly classified areas
and likely to be misclassified.

5. Conclusion

Previously presented methodologies for earthquake-
induced building damage assessment from SAR images
have been highly dependent on the available datasets, in-
cluding preseismic SAR data and building footprint data,
and a time-consuming threshold determination. This de-
pendency on available datasets has made it difficult to use
the resulting assessments in other real applications.

To improve the applicability of the previous method-
ologies, this study explored the integration of two tech-
nologies, i.e., speckle divergence-based object analysis
and the Random Forest-based machine learning frame-
work, for built-up area extraction and object-based build-
ing damage estimation. Two ALOS-2/PALSAR-2 dual
polarimetric SAR datasets of the affected areas acquired
soon after the 2015 Nepal earthquake were evaluated to
determine the effective features, the influence of the ob-
ject scale, and the effects of the feature reduction on pre-
dictive accuracy. Although the optimal set of features
varies distinctively from case to case, a number of po-
larimetric, texture, and color features proved to be use-
ful. The color information derived from the pseudo color
imagery provided only a little complementary informa-
tion in terms of distinguishing the type of building dam-
age while the random scattering metric and the reflection
symmetry metric that originated from the dual polarimet-
ric image in this paper provided more significant enhance-
ments. This study also showed that the newly introduced,
cross-polarization-guided GLCMs are even more useful
and thus worthy of attention. In general, the color fea-
tures are not as good as the polarimetric and texture fea-
tures in terms of distinguishing types of damage. Our
results indicate that feature reduction leads to improved
estimation, but they also indicate that not all significant
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Damaged block

(b)
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Km0 5

Km0 5

Km0 5

Ground Truth Data

K Nearest Neighbor Classifier

Random Forest Classifier

Fig. 10. The comparison of the block-object GTD (60 × 60
pixel) and the classification result. (a) Block-object ground
truth data (60 × 60 pixel). (b) RF classifier based damage
classification result. (c) KNN classifier based damage clas-
sification result.

features can be fully exploited with one particular seg-
mentation scale. In summary, the RF classifier provided
relatively high overall accuracies, up to 93% with a kappa
coefficient of 0.885 when the 60×60-pixel scale and 15
features are adopted, while the comparative test using the
k-nearest neighbor classifier achieved overall accuracies
of up to 91.5% with a kappa coefficient of 0.40, demon-
strating that the soft decision of the RF classifier affords a
significant improvement in terms of balancing the correct
classification. However, it seems that the range of po-
tentially useful features for earthquake-induced building
damage mapping has still not been fully exploited; other
kinds of SAR datasets, such as the fully polarimetric SAR
dataset, should be used to explore the physical scattering
mechanism of radar in the built-up areas affected by earth-
quake.

One of the most important advantages of the proposed
framework is its high applicability. One post-event re-
mote sensing image and a small portion of ground truth

data were sufficient for an efficient performance of the
RF classifiers. In most practical situations, such data will
be available. In situations in which more data, such as
pre-event imagery or remote sensing data from any other
source, are available, the proposed framework can accom-
modate a large variety of additional datasets and object
metrics, and these may be used to further increase map-
ping accuracies. In summary, the framework presented
in this paper provides a general approach to mapping the
overall area affected by earthquake. It also has to be noted
that, at this point, we have only explored the technical as-
pects of the damage mapping with the help of ground truth
data; in real disaster responses, the ground truth data can-
not be expected. In order to quickly achieve damage map-
ping without ground truth data, the current architecture
will require further enhancements. Furthermore, for quick
disaster responses in the future, there will be a strong need
for a streamlined building-damage estimation system im-
plemented on a desktop computer.
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