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We examined the potential impact of climate change
on Tokyo metropolitan water resources in the
Tone River basin using output from a super-high-
resolution global atmospheric general circulation
model, AGCM20, having 20-km spatial resolution
and 1-hour temporal resolution. AGCMZ20 is run
on the Earth Simulator and being developed un-
der the Japanese government’s Kakushin21 program.
AGCM20 has an advantage in simulating orographic
rainfall and frontal rain bands, so we used its output to
analyze Tone River basin water resources. The basin
covers 16,840 km? and the main channel is 322 km
long from its source to the Pacific Ocean. AGCM20
outputs hourly precipitation and daily variables such
as snowfall, rainfall, snowmelt, evaporation, and tran-
spiration for a present period, 1979-1998, and a pro-
jected period, 2075-2094. A comparison of these two
periods showed that snow-related variables will de-
crease and all others will increase. Based on a com-
parison of ordered daily precipitation curves (ODPC)
between AGCM20 and the Automated Meteorological
Data Acquisition System (AMeDAS), a high-resolution
Japan Meteorological Agency (JMA) surface obser-
vation network, we corrected AGCM20 precipitation
data bias, and calculated the standardized precipita-
tion index (SPI) drought indicator. The SPI for less
than 6 months does not show noticeable variations un-
der climate change, but the yearly SPI predicts more
frequent dry conditions, indicating increased future
vulnerability to subtle droughts.

Keywords: climate change, AGCM20, SPI, water re-
sources, Tone River Basin

1. Introduction
Intergovernmental Panel on Climate Change (IPCC)

Assessment Report 4 (AR4) states that globally averaged
temperatures have apparently increased since the mid 20t
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century [1], which is assumed due mainly to human activ-
ities such as fossil fuel burning and deforestation. Anthro-
pogenic warming is thus believed to influence many of the
Earth’s physical and biological systems [2]. Unequivocal
climate change thus brings us to a point where we must
clarify its potential impact on society and nature.

Climate change is expected to strongly affect the hydro-
logic cycle in coming decades [3,4]. Long-term changes
in water resources depend mainly on the amount of pre-
cipitation and evapotranspiration (the sum of evaporation
and plant transpiration from the earth’s land surface into
the atmosphere) [5]. Many researchers suggest that cli-
mate change accelerates water cycles with more precipi-
tation and increased evapotranspiration, limiting freshwa-
ter resources less in the next century [6, 7], but increased
precipitation does not necessarily mean sustainable water
resources because less frequent but heavier precipitation
may lead to extremely dry periods [8]. Under future cli-
mate conditions, the risk of water problems may remain
or even increase due to variations in seasonal patterns and
increased numbers of extreme events. In areas dominated
by snow, seasonal variations in water resources due to cli-
mate change become more apparent [9]. A warmer world
will mean less snowfall in winter and earlier snow melting
in spring, shifting much surface runoff to earlier seasons
[10,11].

Future water supply conditions, especially for fresh
water, are difficult to assess due to rapid and uncertain
changes in society [12]. Domestic and industrial water
demand is mainly determined by the population and its
water use. As the urban population increases, fresh water
must be drawn increasingly from distant watersheds as lo-
cal surface and groundwater sources cease to meet water
demand for water or become depleted or polluted. Ob-
taining additional water resources invariably requires time
to prepare required equipment and facilities, and rapidly
changing climatic and environmental conditions demand
that urban and national water supply conditions be moni-
tored regularly and comprehensively.

Heavily populated Tokyo is no exception.  De-
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spite Japan’s abundant average annual precipitation of
1,690 mm/year, which is twice the global average of
807 mm/year, the water supply’s seasonal nature — over
70% of rain falls from May to September, and Japan’s
high population density — 338 person/km? — prevent the
water supply from being sustainable [13]. Water alloca-
tion in Japan is only about 3,230 m?/person/year — half
of the world average of 8,559 m?®/person/year. Given
Tokyo’s population density of 13,416 person/km?, the al-
ready critical nature of the area’s water resources becomes
apparent.

Over 75% of all Tokyo area water comes from the Tone
River northeast of the city [14], with annual snowfall in
the upper river basin one of the major sources at over
half of annual precipitation. We studied the potential im-
pact of climate change on the Tone River basin, partic-
ularly Tokyo’s water resources, using the output from a
super-high-resolution global atmospheric general circula-
tion model, AGCM?20. This paper is organized as follows:
Section 2 outlines AGCM20 and the study area. Section
3 analyzes model output checked versus AMeDAS obser-
vation data. Section 4 assesses the water resource prob-
lem using a standardized precipitation drought index, and
presents results and a brief discussion. Section 5 summa-
rizes conclusions.

2. Data and Study Area

2.1. Super-High-Resolution Atmospheric Model

Climate condition projections use numerical models
to simulate global atmospheric and oceanic circulation.
The rapid evolution of these general circulation models
(GCMs) in the last three decades was enabled by in-
creased in computer capacity and a better understanding
of natural phenomena correspondingly improving model
complexity, e.g., spatial resolution in model operation.
Climate models used in the First Assessment Reports
(1990) of the Intergovernmental Panel on Climate Change
(IPCC) [15] were run at a coarse resolution using a
500 km x 500 km grid for the most detailed horizontal
resolution. Models in Assessment Report 4 (AR4) (2007)
[1] were run at a 100 km Xx 100 km grid in the most de-
tailed resolution.

Despite such improvements, the GCM spatial operat-
ing scale remains hydrologically coarse, and GCM output
averaged for each grid cell makes it difficult to use GCM
output, as is, in regionalized water resource problems. Ex-
pecting sophisticated terrain effects on hydrologic vari-
ables, such as precipitation and evapotranspiration, from
such data is not always reasonable, either. To bridge the
spatial resolution gap between GCMs and hydrologic use,
hydrologists often physically or stochastically downscale
GCM output .

In 2007, Japan’s Ministry of Education, Culture,
Sports, Science, and Technology (MEXT) launched the
Innovative Program of Climate Change Projection for the
21% Century (Kakushin21) to develop AGCM20, a very-
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high-resolution atmospheric model having 20-km spatial
and 1-hour temporal resolution. After several test simu-
lations, AGCM20 showed advantages in simulating oro-
graphic rainfall and frontal rain bands [16]. Due to the
spatial scale of frontal rain bands and the difficulty of
simulating physical tropical cyclone behavior using con-
ventional GCMs, a high-spatial-resolution model was re-
quired to simulate extreme precipitation more accurately
and to project trends based on climate change. AGCM20
has the advantages of avoiding conventional problems on
a spatial scale, not requiring further regional downscaling
using a regional climate model or statistical downscaling.
The 20-km spatial resolution was considered for inves-
tigating water resource problem in major Japanese river
basins.

The hydrologic data we used is output by AGCM?20,
run on the Earth Simulator, a parallel-vector supercom-
puter. Working with the Meteorological Research In-
stitute (MRI), Japan, the Japan Meteorological Agency
(JMA) developed a next-generation global atmospheric
model prototype for climate simulation and weather pre-
diction [17]. The resulting model conducts simulation us-
ing triangular truncation at wave number 959 with a linear
Gaussian grid (TL959) in the horizontal based on 1920 x
960 grid cells about 20 km in size and 60 levels in the
vertical.

AGCM20 uses the HadISST1 dataset [18] as ob-
served monthly mean climatologic sea surface tempera-
ture (SST) for a boundary condition of controlled simu-
lation. HadISST1 provides global sea ice and sea surface
temperature (GISST) datasets from 1871 uniquely com-
bining monthly, globally complete fields of SST and sea
ice concentration on a 1° latitude x 1° longitude grid [18].
SST projected for simulation was estimated from the en-
semble mean of GCM simulation output under the A1B
emission scenario [19] from the model output of the Cou-
pled Model Intercomparison Project Phase 3 (CMIP3)
[20]. According to the A1B scenario of the Special Report
on Emissions Scenarios (SRES) [19], IPCC, the global
average temperature is expected to increase 2.5°C and the
CO; concentration to become 720 ppm by 2100. Under
these conditions, the daily mean temperature average for
Japan will increase up to +4.4°C by the end of this cen-
tury. The ensemble mean of SST for AGCM?20 projec-
tion simulation was additionally composed with an annual
variation of the current HadISST1 SST to make the esti-
mation more realistic.

AGCM?20 output data is mainly related to hydrologic
variables, such as rainfall, snowfall, evaporation, and tran-
spiration. The model provides present output (1979-1998)
and future output (2075-2094), which we analyzed for
each term to determine any considerable change in or ef-
fect on water resource problems. The data is test-run out-
put of AGCM?20 provided in 2008. (Refer to Mizuta et al.
(2006) [16] and Kitoh and Kusunoki (2007) [17] for de-
tails on AGCM?20 and Kusunoki and Mizuta (2008) [21]
for simulation environment details.)
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Fig. 1. Tone River basin and Tokyo metropolis (left). Lines at right represent the channel network of the upper Kurihashi gauging
station (8,772 km?). Diamonds represent corresponding AGCM?20 output grid points.

Table 1. AGCM20 Hydrologic Variables.

Variable Description Time Resolution
precipi Precipitation (rainfall and snowfall) Hourly
presn Snowfall from atmosphere Daily
presl Rainfall reaching soil layer (throughfall) Daily
sn2sl Snowmelt into soil layer Daily
evpsl Evaporation from soil layer Daily
trnsl Transpiration from soil root zone Daily

2.2. Tone River Basin

The 16,840 km? Tone River basin northeast of Tokyo,
Japan, [14] is the site of a 322 km river emptying into the
Pacific Ocean. The basin population is about 12 million,
and the basin itself covers half of Japan’s capital, which
has a population of about 24 million. About half of the
basin is covered by forest (45.5%) and 30% of the land is
used for farming (paddy field: 18.2%, cropland: 11.2%).
Residential districts account for 6.4% of land use and city
use for 3.7%.

Japan’s rather high amount of annual precipitation av-
erages 1,690 mm/yr, with 1,380 mm/yr in the Tone River
basin [13]. Tokyo’s high population density, however, has
severely compromised regional water resources. Accord-
ing to the Tokyo Metropolitan Government, Tokyo’s pop-
ulation was 12.36 million — 10% of the nation’s popula-
tion — in September 2003. With an area of 2,187 km?, the
overall population density is 565 persons/km?, and even
denser in the city’s 23 central wards. This means that 8.34
million people occupied 621 km? as of September 2003,
making a population density of 13,416 persons/km?.

Up to the 1950s, Tokyo depended on the Tama River
basin for its water supply, but its dependence on the Tone
River basin increased as the city grew larger and denser.
Today, 75% of all water and 88% of the Tokyo metropoli-
tan domestic water supply come from the Tone River and
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its tributaries. Eight dams control the upper Tone River
and water produced from them — 6.5 million m>/day [14]
—is sent to Tokyo through the Musashi Canal in the river’s
middle reaches. Our study area (Fig. 1) is the 8,772 km?
northern basin, which covers the starting point of the
Musashi Canal.

3. Atmospheric Model Output Analysis

3.1. Model Output Hydrologic Variables

AGCM20 hydrologic variables include precipitation
data and other values related to soil moisture. Hourly
precipitation data available from model output, together
with daily snowfall data, is considered as pure rainfall
and snowfall from the atmosphere (Table 1). Variable
presn specifies rainfall reaching the soil (throughfall ex-
cluding other loss such as interception) and variable sn2sl/
snowmelt into the soil. Variable evps/ specifies evapora-
tion and variable trnsl transpiration from the soil layer.
(Evaporation and transpiration from the canopy are also
considerable from AGCM20, but it is more straightfor-
ward to consider direct in- and outflow for the soil layer if
water resources are the main concern.)

We compared precipi and presn for the present (1979-
1998) and future (2075-2094) to determine the main ef-
fects of climate change. To compare these two sets of
Tone River basin data, we prepared basin-averaged values
by averaging 24 grids covering the entire basin (Fig. 1).
Analyzed values are all basin-averaged.

Monthly variations in rainfall and snowfall precipita-
tion were produced from a 20-year mean of individual
months for the present and future (Fig. 2). According
to AGCM20 simulation, future annual precipitation will
increase slightly from 1,776 mm to 1,851 mm (4.2%),
while snowfall will decrease significantly from 285 mm
to 174 mm (38.9%). Climate change, which is mainly
a temperature increase, appears to cause the decrease in
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Monthly Precipitation in the Tone River Basin
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Fig. 2. Monthly rainfall and snowfall precipitation precipitation patterns in the Tone River basin, produced from the mean of 20

years for each present and future term.

Table 2. Changes in Tone River basin hydrologic variables
(unit: mm/yr).

Variable Present Future Change
1. precipi 1,776 1,851 +42%
2. presn 285 174 -389%
3. presl 1,336 1,511 +13.1 %
4. sn2sl 269 168 -37.8%
5. evpsl 278 330 +18.9 %
6. trnsl 240 276 +14.8 %
Ne‘é’;ﬁ”s’;;"; soil 1,087 1,073 -13%

snowfall. Winter rainfall, however, increases in the future,
and total Tone River basin precipitation shows a slight in-
crease.

Future increased annual precipitation and decreased
winter snowfall are also shown by output from the re-
gional climate model (RCM20) [22] of JMA and MRI.
Fujihara et al. (2008) [23], in analyzing RCM20 output,
showed that annual Tone River basin precipitation will in-
crease about 200 mm at the end of this century. Wada
et al. (2005) [24], also analyzing RCM20 output to assess
nationwide flood and drought risk, showed that winter and
spring precipitation will decrease in the future for most of
Japan, while extreme daily precipitation will increase in
some parts of northern Japan. RCM20 output is based on
the IPCC SRES A2 scenario [22], which assumes a more
apparent temperature increase by 2100 than the A1B sce-
nario [19].

Other AGCM?20 output variables (Table 2) indicated a
dramatic increase in evaporation — 18.9% — and transpira-
tion — 14.8% — and an approximate 100 mm/yr additional
loss from available water resources. In effect, future net
precipitation shows a 13.1% decrease in AGCM20 simu-
lation.

Briefly, then, total present precipitation data has
slightly larger values than historical observations in the
Tone River basin. As stated, annual Tone River precipi-
tation is 1,380 mm/yr — but shown by model output from
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controlled simulation for the present to be 1,776 mm/yr,
which is a considerable overestimation. It thus appears
necessary to check controlled simulation reproducibility
more carefully. Using AMeDAS observation data for the
present (1979-1998), we compared AGCM20 output to
observation, especially for precipitation, as detailed be-
low.

3.2. Precipitation Data Reproducibility

Despite much improved technology and computeriza-
tion, models still do not provide realistic simulation be-
cause resolving all-important spatial and time scales re-
mains far beyond current capabilities. Given this, we
verified ACGM20 controlled simulation reproducibility,
which becomes acceptable if comparable to historical pre-
cipitation, snow, and evaporation observation. Any criti-
cal bias between AGCM20 output and historic observa-
tion requires correction or modification of original data
to eliminate the bias both in controlled simulation output
and in projection simulation output, also considered for
further analysis and use.

Precipitation data for the present (1979-1998) comes
from AMeDAS observations at over 30 stations around
the Tone River basin. Since data is point-gauged,
AMeDAS data must be converted to the same 20-km grid-
based data format as AGCM20 output using an inverse-
distance weighting factor. A comparison of AGCM20
precipitation output and grid-based converted AMeDAS
precipitation data showed that AGCM20 output data has
larger precipitation than that observed. Basin-averaged
annual precipitation for the last two decades (1979-
1998) shows a significant discrepancy of 1,776 mm from
AGCM20 and 1,416 mm from AMeDAS observation —
a 25.4% overestimation. Annual daily maximums from
AGCM?20 are, however, lower than maximum historical
observations.

To understand this difference, we sorted daily precip-
itation for each year by amount and plotted it (Fig. 3).
Ordered daily precipitation curves (ODPC) of AMeDAS
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Fig. 3. Ordered daily precipitation curves (ODPC) from AMeDAS data and AGCM20 output. Black line: AMeDAS ODPC mean.

Gray line: AGCM20 ODPC mean.

and AGCM20 output mostly overlap, but the mean of each
order’s daily precipitation shows a clear difference in the
two datasets (bold solid lines; black: mean AMeDAS ob-
servation ODPC; gray: mean AGCM20 output ODPC).

AGCM20 simulation precipitation output has lower
values for higher-level rainfall of over 40 mm/day
and higher values for lower-level amounts of less than
40 mm/day compared to AMeDAS observation. The
slight overestimation for lower-level AGCM?20 rainfall re-
sults in the significantly overestimated annual precipita-
tion. The considerable AGCM20 output bias must be cor-
rected or decreased before data can be considered in fur-
ther analysis, as detailed below.

3.3. AGCM20 Bias Correction

Bias correction of GCM output is subtle. Even though
critical bias in model output must be corrected, this cannot
be done arbitrarily as simulation output from a physically-
based atmospheric model. Model output consists of re-
sults from dynamic reactions among many physically re-
lated state variables in a complex model, of which precip-
itation is just one state value among many.

We attempted to correct AGCM20 precipitation out-
put bias by adjusting ranked daily precipitation amounts
of model output to ranked historical values — so-called
“daily scaling” — used in research such as the studies of
Chiew (2003) [25], Harrold and Jones (2003) [26], and
Kiem et al. (2008) [27]. This bias correction deals with
daily variant scaling factors, or scaling ratios, based on
ODPC information. Through this procedure, AGCM20
precipitation output for annual volume and daily maxi-
mum matched historic observation values. When we con-
sider each order’s precipitation values from both observa-
tion and model output, the procedure enables considera-
tion of two sets of histograms from datasets, e.g., a pair
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of histograms of the first annual maximum, second maxi-
mum, third, etc., of observation and output. Although the
histograms would be shaped differently, we could correct
the first and second moments of each dataset from model
output to match the moments of the observation dataset.

Let x; then be original AGMC20 output values having
first and second moments as {1, o, and x; is the mod-
ified value, which has the first and second moments of
AMeDAS observation, » and 6;. Assuming that these
two datasets are distributed normally, these values can be
related by standardizing the distribution:

X1—H1  x2— M2

= N ¢ )
(o] (62
Eq. (1) is rewritten for x;:
o
x2=—2(x1—,u1)+u2 ()
(9]
or
Xy =ro (X1 — M) +ruh 3)

where ry, = lip /11 and rg = 02/07.

Original value x; can be AGCM20 output for the
present and future. Ratios of first moment values, r,;, and
second moment values, rg, are acceptable from AGCM20
output for the present and AMeDAS observation. This
means that model output for the present is corrected to
have the same values as the observation’s first and sec-
ond moments, and model output for the future is corrected
with the same proportion of present term correction using
ratios ry and rg.

For the ratio of each order’s first moment of observa-
tion to present output (diamonds) and the ratio of each or-
der’s second moment (crosses) (Fig. 4; gray line: ODPC
mean regression curve; black: ODPC standard devia-
tion), regression curve equations are calculated with a
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Fig. 4. Ratio of ODPC mean (diamonds: mean of ordered daily precipitation curves) and ratio of ODPC standard deviation
(crosses). Gray line: Regression curves of ODPC mean. Black line: Regression curves of ODPC standard deviation.

Table 3. Regression function constant values and root mean
square error (RMSE).

Constant Tu ro

A -8.0065 x 1072 9.7844 x 10"
B 7.6117x 1077 -1.9023 x 107°
c -2.9278 x 107 -2.9095 x 10”7
D 5.5698 x 10 12427 x 10°
E -7.8169 x 10° -1.7841x 107
F 1.0564 1.4331
Regression RMSE 0.99999 0.98888

five-ordered polynomial:

f(r)=ax’ +bx* + e’ +d’ fex+ f . (€))

Constant values for the mean ratio and standard devia-
tion ratio are shown in Table 3 with regression root mean
square error.

In one example of bias correction results (Fig. 5) for
daily precipitation before and after bias correction from
May to September 1985, the low amount of precipitation,
which is less than 40 mm/day, shows a decreased amount
after correction and a high amount of precipitation has a
higher amount than original values. Bias correction us-
ing ordered daily precipitation values does not disturb the
original time series of precipitation and provides a way
to simultaneously modify annual precipitation and annual
maximum values.

Histograms of annual precipitation produced by
AMeDAS observation and AGCM20 output (Fig. 6) are
distributed around 1,416 mm with a normal distribution
pattern (black connected with thin lines). Before bias
correction, annual AGCM20 output precipitation (gray)
showed results significantly different from observation.
After correction, considerable AGCM20 output bias was
removed and the annual precipitation mean resembles that
observed (black histogram, Fig. 6). The annual precipita-
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Fig. 5. Results of bias correction from May to September
1985. Precipitation of < 40 mm/hr decreased and precipita-
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Fig. 6. Histograms from AMeDAS observation (black),
original AGCM20 output (dark gray), and bias-corrected
AGCM20 output (dark black). After bias correction,
AGCM20 output precipitation had the same annual mean as

AMeDAS observation, 1,405 mm.

tion mean before correction was 1,776 mm and 1,405 mm
after correction. The bias-corrected AGCM?20 data his-
togram remains skewed and does not match the observa-
tion histogram exactly, which will require further consid-
eration in future research.
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4. Water Resources Condition Assessment by
Drought Indicator

4.1. Standardized Precipitation Index

Most of the many indicators used to identify drought
conditions, such as the Palmer drought severity index
[28], crop moisture index [29], and surface water supply
index [30], require multiple input data, including temper-
ature, soil moisture, snow pack, and reservoir storage, in
addition to precipitation data. McKee et al. (1993) [31]
therefore introduced the standardized precipitation index
(SPI) to assign a single numerical value to precipitation
for assessing drought conditions. The SPI enables anoma-
lously dry or wet periods to be determined on a particular
time scale for any location having a precipitation record.

SPI calculation is based on the long-term precipitation
record for a period, such as only for spring or a certain
month, with calculation for multiple, mutually indepen-
dent desired periods, freeing analysis from seasonal varia-
tion and/or characteristics of precipitation patterns for the
particular location. For one-month time scale SPI analy-
sis, for example, precipitation data for each month from
January to December is pooled separately for 12 indepen-
dent SPI calculations. The SPI is designed to quantify the
precipitation deficit for multiple time scales, which reflect
drought impact on different water resources. Soil mois-
ture conditions respond to precipitation anomalies over a
relatively short time (shorter than six months), whereas
groundwater and reservoir storage reflect long precipita-
tion anomalies (over six months). McKee et al. (1993)
[31] calculated the SPI for 3-, 6-, 12-, 24-, and 48-month
time scales.

Technically, the SPI is the number of standard devi-
ations that the observed value would deviate from the
long-term mean for a normally distributed random vari-
able. Since precipitation is not normally distributed, the
long-term record was first fitted to a probability distribu-
tion such as gamma distribution and then converted to a
normal distribution so that the mean SPI for the location
and desired period is zero [32]. Conversion is done by
equiprobability transformation, which Panofsky and Brier
(1958) [33] suggested was such that the probability of be-
ing less than a given value of the original distribution, e.g.,
gamma, would be the same as the probability of being less
than the corresponding value of the converted distribution,
e.g., standard normal. The cumulative monthly precipita-
tion probability was converted to standard normal random
variables with mean zero and a variance of one, which is
the value of the SPI. Positive SPI values indicate greater
than median precipitation, and negative less than median
precipitation. Because the SPI is normalized, wetter and
drier climates are represented the same way, and abnormal
wet periods can also be monitored using the SPI.

Thanks to its simplicity and flexibility, SPI analysis has
been widely accepted, e.g., Seiler et al., 2002 [34]; Min
et al., 2003 [35]; Morid et al., 2006 [36]); and National
Drought Mitigation Center, US [37]. Hayes et al. (1999)
[38] showed how the SPI could be used for operational
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drought monitoring with varying time scales and it could
identify drought in advance of other drought indexes. SPI
analysis is thus useful both for checking drought condi-
tions and for investigating abnormal wet conditions such
as for flood risk monitoring [34].

4.2. SPI Analysis of AGCM20 Output

After bias correction for present and future AGCM20
output, we conducted more detailed analysis using the SPI
to determine critical conditions through climate change
in the future, first analyzing bias-corrected precipitation
AGCM?20 output, and then original AGCM?20 output for
the SPI. In both cases, AGCM20 output for present and
future climate conditions was merged and regarded as one
dataset both to investigate variability change in precipita-
tion patterns under climate change and to observe overall
pattern change. With 20 years of data for each present and
future condition, the merged dataset covers 40 years of
precipitation. McKee et al. (1993) [31] proposed over 30
years for SPI calculation, and Guttman (1994) [39] sug-
gested 40-60 years for stable SPI parameter estimation.
Since the SPI is probability-related, longer precipitation
data records yield presumably more reliable results [40].

In converting SPI analysis with cumulative frequency
distribution precipitation for present and future in cumu-
lative frequency distribution curves, monthly Tone River
basin precipitation is distributed from 0 to 400 mm and
cumulative frequency for the median value, 200 mm, is
90% (Fig. 7). The example shows one-month precipita-
tion data, but the same procedure can be applied to other
time scales. Specifically, the SPI can be calculated for any
month in the record or data for the previous » months, so
the SPI for a certain month was calculated with an ac-
cumulated precipitation for the previous n months. To
check water resource conditions for the Tone River basin,
we calculated and analyzed the SPI for three (SPI-3), six
(SPI-6), and 12 (SPI-12) months of the present (1979-
1998) and future (2075- 2094).

SPI-3, SPI-6, and SPI-12 results are about one century
apart (Fig. 8). Even though annual future precipitation
increases in rainfall compared to the present, the SPI of
future data does not show wetter conditions. Positive SPI
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Fig. 8. SPI analysis results with 3 months (top), 6 months (middle), and 12 months (bottom) of data for bias-corrected present and

future AGCM20 output data.

Table 4. SPI and corresponding cumulative probability.

SPI Cumulative Probability SPI Description
2.0 0.9772 2.0< Extremely Wet
1.5 0.9332 1.5< Very Wet
1.0 0.8413 1.0< Moderately Wet
0 0.500 -1.0~1.0 Normal

-1.0 0.1587 <-1.0 Moderately Dry
-1.5 0.0668 <-15 Very Dry
-2.0 0.0228 <-2.0 Extremely Dry

values indicate wet conditions and negative values indi-
cate dry conditions, with larger magnitude proportional to
the severity of the condition (Table 4). SPI values less
than —1.5 are regarded as severely dry and a value less
than —2.0 is extremely dry.

Table 5 shows the number of months exceeding
severely wet (> 1.5) and dry (< —1.5) and extremely
wet (> 2.0) and dry (< —2.0) conditions, calculated from
modified AGCM20 output for the present and future.
Short and intermediate SPI values show similar occur-
rence in the number of extreme conditions, but SPI12
values for assessing long-term water resource conditions
show notable behavior. Even though future annual pre-
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Table 5. Months exceeding severely (extremely) wet (dry)

conditions.
Present Future
Wet
2.0< 1.5< 15< 2.0<
7 11 SPI-3 17 7
8 14 SPI-6 24 8
12 15 SPI-12 26 2
Present Future
Dry
<-2.0 <-1.5 <-1.5 <-2.0
5 28 SPI-3 11 4
13 SPI-6 11 3
2 4 SPI-12 9 5

cipitation is increased compared to that for the present,
SPI-12 shows more frequent dry conditions in the future.
SPI analysis was done using precipitation data only, and
does not consider other hydrologic variables related to
water loss, evaporation, or transpiration. If these losses
are considered in SPI analysis, results will be more ap-
parent because net precipitation in the Tone River basin
will decrease in the future according to AGCM20 output
analysis.

To understand the effect of bias correction on AGCM20
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Fig. 10. SPI analysis results for 12 months of present (up) and future (down) with bias-corrected and original AGCM20 output data.

precipitation output, we redid SPI analysis again with
original AGCM20 precipitation output. Because bias cor-
rection is an additional modification to original model
output, it is desirable that results from SPI analysis re-
semble original AGCM20 output (Figs. 9 and 10). As
expected SPI-3 and SPI-12 results do not show significant
differences before and after bias correction.

20

5. Conclusions

We have analyzed high-resolution atmospheric model
AGCM20 output to determine potential water-related
crises in the Tone Rive basin, the main domestic water
source of metropolitan Tokyo, Japan. Some 75% of all
water and 88% of Tokyo’s water supply comes from this
basin, which enjoys a rather high amount of annual pre-
cipitation. Tokyo’s high population density, however, has
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severely compromised its water resources.

We analyzed AGCM20 output for 1979-1998 and
2075-2094 to determine potential overall changes in the
basin’s water resources, finding that projected annual pre-
cipitation is expected to increase 4.2% together with a
severely reduced 38.9% decrease in future snowfall. This
decrease must be compensated for by increased rainfall
season. AGCM20 simulation indicated that evaporation
and transpiration would increase about 20% in the future.

AGCM?20 precipitation output in controlled simulation
showed some discrepancies from observed precipitation,
such as a smaller daily maximum but a larger annual
amount overestimated by 25.4%. Through bias correction
using ODPC, we removed the bias and corrected present
and future AGCM20 output.

Based on corrected data, we conducted a more de-
tailed analysis to determine potential changes in water re-
sources using a drought indicator, the standardized pre-
cipitation index (SPI), calculated for a short term of three
months (SPI-3), an intermediate term of six months (SPI-
6), and a long term of 12 months (SPI-12). SPI-3 and
SPI-6 showed a similar number of extreme conditions,
but SPI-12 showed more frequent wet conditions for the
present and more frequent dry conditions for the future —
the opposite of behavior to the brief analysis with annual
precipitation, since the future has more increased annual
precipitation. Our SPI analysis used only precipitation
data, without considering loss through evapotranspiration.
Since net precipitation is predicted to decrease in the fu-
ture, Tone River basin water resources should be more
fully analyzed taking into account other hydrologic vari-
ables related to water resources.
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