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A novel approach to geometry optimisation in the field
of 2D cutting is presented in this paper. Set point gen-
eration inside of state of the art CNCs is divided in the
preparation of the geometry and the feed rate gener-
ation. The feed rate generation is influenced by para-
metric derivatives of the given geometry. Due to this
fact, the shaping of a B-Spline is carried out by optimi-
sation of the weighted sum of parametric derivatives
while the given manufacturing tolerances are main-
tained. For the sake of robustness, the arising optimi-
sation problem is formulated as a quadratic program
with linear constraints, one which can be solved with
great efficiency by using an interior point method. In
contrast to state of the art methods, the discrete for-
mulation of the problem allows for a pointwise specifi-
cation of the manufacturing tolerance. Depending on
the manufacturing process, the given manufacturing
tolerance is shared by different axes, which is shown
for a 2D cutting geometry. An application example
shows that the geometry optimisation leads to an in-
crease in machining productivity over state of the art
methods.

Keywords: geometry optimisation, quadratic program-
ming, optimisation, B-Splines, machine tool

1. Introduction

Machining productivity is defined as the number of
manufactured parts of a comparable quality per unit of
manufacturing time, according to Weck and Brecher [16].
Reducing the processing time while maintaining the re-
quired quality therefore increases the productivity of a
machine tool.

The set point generation in computerised numerical
control (CNC) is divided in two main steps: geometry
generation and the feed rate generation, respectively. Due
to the fact that the manufacturing of a desired workpiece
consists of the relative movement of the tool and the work-
piece along spatial trajectories, the surface information
of the design has to be converted into NC code using a

computer-aided manufacturing (CAM) tool. For this task,
state of the art CAM tools use straight lines and circular
arcs, which are discontinuous at the transitions. Disconti-
nuities, high actuator forces, and force rates, respectively,
lead to the mechanical excitation of a machine tool, which
is a limiting factor of the productivity described above.
Therefore, the challenges for geometry optimisation are
both the elimination of discontinuities and the reduction
of forces and force rates perpendicular to the tool path.
For a given feed rate, the resulting deformation of the ma-
chine tool is proportional to these forces, which in turn
are proportional to the curvature of the tool path.

Optimisation of the tool path is accomplished depend-
ing on the NC code, which usually consists of one of the
two following programming types.

• Basic geometries, which are described by a sequence
of straight lines and circular arcs in order to realise
machining operations on the shop floor.

• Freeform curves, which in the majority of cases are
described as a sequence of short, straight lines. This
type of NC program is usually created by a CAM
tool.

Since NC-blocks, such as straight lines and circular arcs,
are continuous, the discontinuities are only located at tran-
sitions between subsequent NC-blocks, e.g. corners. In
this case, state of the art methods in the field of geome-
try optimisation start and end in the immediate vicinity of
the transition. If subsequent NC-blocks have arc lengths
of under 1 mm, the smoothing of the transitions is very
disadvantageous because the large number of transition
points leads to oscillations of the curve, even though if the
curvature is continuous. In this case, a global smoothing
of multiple NC-blocks is needed. The most challenging
task in global smoothing is finding a continuous function
that represents the original NC-blocks as smoothly as pos-
sible within the given tolerance. In Fig. 1, the local and
global smoothing of NC-blocks is shown. Based on geo-
metric considerations, several approaches in the field of
geometry optimisation have been investigated. For the
geometry optimisation and feed rate generation of lin-
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Fig. 1. Planar geometry consisting of circular arcs and
straight lines. The global smoothing of multiple NC-blocks
is denoted by the red line. The rounding of the transitions of
subsequent NC-blocks, i.e. local smoothing, is denoted by
blue lines.

ear systems, Yu [17] presents algorithms which are based
on the spline representation of the tool path and which
use spline-based interpolation and approximation meth-
ods. Morishige and Kaneko [10] use B-Splines to ob-
tain continuous movements of the machine tool and less
movement of the rotational axes, therefore, producing an
excellent finished surface for milling with a ball end mill.
Bouard et al. [4] minimise the curvature of the regarded
trajectory while ensuring the constraints given by the pro-
cess and geometry. Hadorn [8] also minimises the curva-
ture of an assumed smoothing spline. In his work, meth-
ods for both the smoothing of the transition between sub-
sequent NC-blocks with quintic Bezier-Splines and the
global smoothing of multiple NC-blocks with cubic beta-
Splines are investigated. For the continuous connection
between a quintic Bezier-Spline and the given geometry,
the λ -parametrisation is investigated. It is generalised
for a B-Spline of degree p in section 3.3. Regarding
the global smoothing of multiple NC-blocks with beta-
splines, the convex hull property of these types of curves
is used for the shaping, since the control points of the
smoothing spline are chosen in such a way that the result-
ing curve remains within the convex hull of the polygon
given by the control points. Zhao et al. [18] show the ana-
lytic smoothing of multiple G01 blocks with B-Splines. In
addition, feed rate constraints are evaluated along the tool-
path. Established in the field of CAD, Park and Lee [12]
evaluate dominant points of a given discrete curve in re-
sponse to the curvature. Therefore, only discrete points
at curve sections with large curvatures are considered for
a subsequent approximation. In the case of discontinu-
ities or high curvatures of the discretised geometry, this
approach leads to an unintended accumulation of control
points and a bad shape of the approximated curve, as well
as to a low feed rate.

In order to decrease machining time, Boz et al. [5] in-
vestigate a feed scheduling strategy for the calculation of
the desired feed rate with respect to the maximum allow-
able cutting force. Feed rate scheduling leads to shorter
cycle times than when the feed rate is constant. Although
this method produces higher local feed rates and shorter
machining times, the continuity of the trajectory is not in-
creased.

Taking into account that the resulting feed rate is di-
rectly affected by the parametric derivatives of a given
geometry, Beudaert et al. [3] show an approach to the
smoothing of 5-axis tool paths in order to maximise the
resulting feed rate via the local smoothing of single axes.
A quadratic programming (QP) approach with linear con-
straints for the smoothing spline is implemented by Kano
et al. [9]. Although the deviation between the smoothing
function and the programmed trajectory is limited during
optimisation, there is no tolerance sharing between the
axes involved in the optimisation. Consequently, a full ex-
ploitation of the manufacturing tolerance is not achieved
with this approach. Another QP approach in the field of
geometry optimisation is given by Haas [7]. In this work,
in order to limit the resulting deviation perpendicular to
the tool path, higher parametric derivatives of the smooth-
ing curve are minimised with respect to linear constraints
on the tool path in the case of 2D cutting. The decrease
in machine excitation is evaluated using a 2-mass-spring
model and measurements on a real machine.

As mentioned above, the subsequent calculated feed
rate is affected by the parametric derivatives of the ge-
ometry. Due to this fact, there is a need for a global op-
timisation of these derivatives while exploiting the given
manufacturing tolerances in order to increase productiv-
ity. State of the art algorithms in the field of geometry
optimisation deal with a global limitation of the manufac-
turing tolerance, which is identified regarding the worst
case of the machine tool within the work space. In con-
trast, a point-wise limitation of the path deviation would
allow for a better exploitation of the given manufacturing
tolerances.

The paper is organised as follows. General remarks,
including fundamentals of curves and path dynamics, are
given in section 2. A method for discrete geometry op-
timisation (DGO), including the cost function as well as
the constraints and boundaries for the optimisation, is pre-
sented in section 3. In section 4, both a machine model
and a virtual CNC for the simulation of the feed rate gen-
eration are presented. Examples of the method are given
in section 5. Section 6 presents the conclusions of this
paper.

2. General Remarks

For geometry optimisation, parametric curves with re-
spect to an increasing parameter s are used. The move-
ment of the tool center point (TCP) is denoted as r(s) and
describes the relative movement of the tool and the work-
piece in a workpiece fixed coordinate system. While vec-
tor quantities have a single underline, matrix quantities
have a double underline. Thus xi denotes the i-th element
of a vector x.

2.1. Properties of Curves
The following definitions are based on Aminov [1] and

are valid for the curves in the remainder of this paper. A
d-dimensional parametric curve is defined as follows.
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Definition 2.1: A parametric curve in R
d is the map r :

I → R
d of the closed interval I := [lb,ub] to R

d .

Important parameters in the remainder of this paper are
the parametric derivatives r(i)(s), which are defined as fol-
lows.

Definition 2.2: The i-th parametric derivative of r(s) is
defined as r(i)(s) = di

dsi r(s). r′(s) is the first parametric
derivative and is called the parametric velocity, r′′(s) is the
second parametric derivative and is called the parametric
acceleration.

The regularity of curves is defined as follows.

Definition 2.3: r′(s) �= 0 ∀s ∈ I := [lb,ub]

Since feed rate generation will be unfeasible if r′(s) = 0
nonregular curves are not considered. Regarding the con-
tinuity of curves, parametric continuity must be distin-
guished from geometric continuity. Parametric continuity
is defined as follows.

Definition 2.4: A curve r(s) is said to be Cn continuous
if the n-th derivative dnr

dsn is continuous for s ∈ [lb,ub].

The geometric continuity in the following, denoted, ac-
cording to Bartels et al. [2], as Gn continuity of a curve
with the parameter n as a measurement of the smoothness,
is defined as follows.

Definition 2.5: Assuming a parametric curve r(s) of
the R

3 in the closed interval s ∈ [lb,ub] the first three or-
ders of geometric continuity are described as follows.

G0: The curve is continuous.
G1: The direction but not necessarily the magnitude of

the tangent vector is continuous. In other words, this
is a curve without any corners.

G2: The direction but not necessarily the magnitude of
the curvature vector is continuous.

Discontinuous forces and high force rates lead to mechan-
ical excitation of the machine tool, which reduces produc-
tivity according to Steinlin [15]. For this reason, the curve
has to be at least G2 continuous. Using the Frenet formu-
lae, the parametric derivatives of a curve in R

3 lead to the
Frenet frame θ (s) = {et(s),en(s),eb(s)}, which is defined
as follows.

et(s) =
r′(s)
|r′(s)| . . . . . . . . . . . . (1)

en(s) =
(r′(s)× r′′(s))× r′(s)
|(r′(s)× r′′(s))× r′(s)| . . . . . . (2)

eb(s) = et(s)× en(s). . . . . . . . . . . (3)

The Frenet frame of a curve is shown in Fig. 2. et(s)
and en(s) span the osculating plane. The curvature circle
lies in this plane, as shown in Fig. 2. While et(s) is tan-
gential to the curvature circle, en(s) is perpendicular to it
and denotes the direction of a connecting line between the
point on the curve and the center of the curvature circle.

XZ

Y

curvature circle

osculating plane

et(s)

en(s)

eb(s)

Fig. 2. Frenet frame, osculating plane and curvature circle
of a parametric curve.

The reciprocal value of the radius of the curvature circle
is called the curvature κ .

κ =
|r′ × r′′|
|r′|3 . . . . . . . . . . . . . (4)

It describes the rate of change of the direction of et(s)
along the arc length of the curve.

2.2. B-Splines
For the geometry description, different types of con-

tinuous curves are available on state of the art open-loop
controllers. Unlike polynomial functions, B-Splines are
not prone to undesirable oscillations and are, therefore,
used for the description of the optimised geometries. The
following explanations are based on Piegl and Tiller [13].

The Basis-Spline in the following, denoted as B-Spline
of degree p, is defined as the linear combination of the
control points ai with the ith B-Spline basis function
Ni,p(s) of the degree p:

r(s) =
m

∑
i=0

Ni,p(s)ai lb ≤ s ≤ ub . . . . . . (5)

The recursively defined ith B-Spline basis functions of
degree p is obtained for p > 1 as

Ni,p(s) =
s− si

si+p − si
Ni,p−1(s)

+
si+p+1 − s

si+p+1 − si+1
Ni+1,p−1(s) . . . . (6)

with

Ni,0(s) =
{

1 if si ≤ s ≤ si+1
0 otherwise . . . . . . (7)

si are knots. At every knot, the description of the basis
function changes. All si lead to the knot sequence u of the
length m+ p+1. For the evaluation of the knot sequence,
closed, open, or clamped curves must be distinguished be-
tween. In the following, only clamped curves, which in-
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terpolate the first and last control points, are regarded. For
these types of curves, the knot sequence is defined as

u = [ lb, . . . , lb︸ ︷︷ ︸
p+1

, . . . ,um−p−1,ub, . . . ,ub︸ ︷︷ ︸
p+1

]. . . . (8)

Characteristic is the p+1-fold occupation of the first and
last node and the aperiodic internal nodes.

3. Discrete Geometry Optimisation

While all given quantities are denoted with an upper
bar in the following, the optimised quantities are denoted
with a tilde.

Assuming a given tool path r(s), which consists of the
NC-blocks r1(s) to rh(s) with 0 ≤ s ≤ 1, an at least G2

continuous curve r̃(s) with a minimum curvature at every
point along the tool path is sought. This leads to an op-
timisation problem including a cost function, constraints,
and boundaries. In favor of robustness, the problem is
formulated as a quadratic program (QP) in order to find a
vector x, which minimises the scalar cost function

J =
1
2

xT H x+ cT x . . . . . . . . . . . (9)

subject to the linear equality constraints

A
eq

x = beq . . . . . . . . . . . . . . (10)

and the linear inequality constraints

A x ≤ b. . . . . . . . . . . . . . . . (11)

H denotes a symmetric matrix and represents the
quadratic part of (9). The vector c represents the linear
part of (9).

3.1. Cost Function

By minimising the parametric derivatives r̃(k)(s) of the
smoothing function, the cost function is defined as

J =
p

∑
i=1

∫ sb

sa

ηi(r̃(i)(s))2ds. . . . . . . . . (12)

with p the number of considered parametric derivatives,
ηi the weights (which are further explained in section 3.4),
sa the start, and sb the end parameter.

The cost function (12) has to be reformulated in the
form of (9). The resulting QP problem has to be convex;
the matrix H in (9) must be positive semidefinite, assum-

ing a feasible solution. The smoothing function r̃(s) is
represented by B-Splines of degree p. These are given by
a knot sequence u for the evaluation of the B-Spline basis
functions Ni,p(s) and the control points ai, which influ-
ence the shape of the curve. The vector x in (9) consists
of the coordinates of the m control points, which optimise
the curve according to the cost function J. Assuming a
knot sequence u with m+ p+ 1 entities and a parameter

vector ŝ with n values leads to

r̃(k)(ŝ) =
m

∑
i=0

N(k)
i,p (ŝ)ai =C(k)(ŝ)a . . . . . . (13)

with C(k)(s) including the basis functions N(k)
i,p (s) evalu-

ated at the parameter values ŝ. In order to realise a good
shape of r̃(k)(s), both a parameter vector ŝ and an appro-
priate knot sequence u must be selected. Three meth-
ods for the parameterisation, assuming that the parame-
ter s lies in the range s ∈ [0,1], are described by Piegl
and Tiller [13]. In the following DGO algorithm, the
parametrisation proportional to the chord length is used.
The chord length L is defined by

L =
n−1

∑
i=0

|ri+1 − ri| . . . . . . . . . . . . (14)

Then the parameter values are given as

si = si−1 +
|ri − ri−1|

L
i = 1, ...,n . . . . . (15)

with

s0 = 0. . . . . . . . . . . . . . . . . (16)

For the parametrisation, a suitable knot sequence has to
be defined. The following technique of averaging for the
computation of u = {u0, ...,um} is recommended by Piegl
and Tiller [13, 14]. It is

u0 = ... = up = 0 . . . . . . . . . . . . (17)

um−p = ... = um = 1 . . . . . . . . . . (18)

and

u j+p =
1
p

j+p−1

∑
i= j

s j j = 1, ...,n− p. . . . . (19)

With this method, the knot sequence u reflects the dis-
tribution of the parameter values ŝ and supports a good
shape for the resulting curve. Inserting (13) in (12) with
the given parametrisation ŝ and the jth increment Δs j
leads to

J =
p

∑
k=1

∫ sb

sa

ηk(̃r(k)(s))2ds

=
p

∑
k=1

n

∑
i=1

ηk (̃r(k)(ŝi))2

=
p

∑
k=1

n

∑
i=1

ηk(C(k)(ŝi)a)2 . . . . . . . . (20)

Therefore, H and c in (9) are defined by

H =
p

∑
k=1

ηkC(k)TC(k) . . . . . . . . . . (21)

c = 0 . . . . . . . . . . . . . . . (22)

The matrix H is positive semidefinite due to the fact
that the matrix represents a squared linear combination
of parametric derivatives. Therefore, (12) is convex, as-
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Fig. 3. Local tripod ψ(s), which arises from the Frenet
frame based on the parametric derivatives of r(s) and the
tool orientation n(s) and admissible deviations Δu, Δv and
Δw of the smoothing function r̃(s).

suming that the linear constraints (10) and (11) support a
feasible solution.

3.2. Constraints
The constraints for the geometry optimisation are de-

fined by the manufacturing tolerance. In consideration of
the fact that the method is exemplified using 2D cutting,
the constraints for r̃(s), in order to fulfill the given toler-
ances, are formulated in the following subsection.

To define the tolerances for a cutting machine
along r(s), the local coordinate system ψ(s) =
{eu(s),ev(s),ew(s)} is introduced according to Fig. 3. It
must be distinguished from the Frenet Frame θ (s), which
is introduced in section 2.1. In the following, it is as-
sumed that the programmed orientation of the tool vector
is collinear to the normal vector n(s) to the sheet metal,
which is cut during machining and is perpendicular to the
cutting direction et(s). Thus, the coordinate system ψ(s)
is defined as

eu(s) = et(s) . . . . . . . . . . . . (23)
ev(s) = n(s)× eu(s) . . . . . . . . . (24)
ew(s) = n(s) . . . . . . . . . . . . (25)

according to Fig. 3.
eu(s) is defined by the parametric speed r′(s), which is

undefined in case of a corner. In this case, the definition
gap is filled by utilizing the one-sided derivative from the
side from which the tool center point (TCP) approaches.
For the focusing of the process tolerance, Δwt is defined
as the limitation of the deviation Δw of the TCP in the
direction of ew(s). To keep the manufacturing tolerance,
a limitation Δvt of the deviation Δv in direction of ev(s) is
introduced. The deviation Δu of the TCP in the direction
of eu(s) is assumed to be very small in the following.

Therefore, the deviation between the smoothing func-
tion r̃(s) and the given function r(s) is defined as

r̃(s) = r(s)+Δueu(s)+Δvev(s)+Δwew(s). . . (26)

According to Fig. 3, under limitation of the process and
manufacturing tolerances, it is

−Δut ≤ Δu ≤ Δut . . . . . . . . . . (27)
−Δuv ≤ Δv ≤ Δvt . . . . . . . . . . . (28)
−Δwt ≤ Δw ≤ Δwt . . . . . . . . . . (29)

To ensure both the manufacturing and process toler-
ances for every point of r̃(ŝ), (26)-(29) are reformulated
in order to be represented by (10) and (11). Defining the
state vector as x = [aT , Δu, Δv, Δw]T ∈ R

(2m+3n)×1, (26)
is represented by the linear equality constraint (10) with

A
eq
=

⎛⎝ C(0) 0 E
u,x

E
v,x

E
w,x

0 C(0) E
u,y

E
v,y

E
w,y

⎞
⎠ . . (30)

and

beq =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

rx,1
...

rx,n
ry,1

...
ry,n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. . . . . . . . . . . . . . (31)

The matrix E
u,x

consists of the the diagonalised x compo-
nents eu,x of the tangential vector:

E
u,x
=

⎛⎜⎝−eu,x,1
. . .

−eu,x,n

⎞⎟⎠ , . . . . . (32)

similarly for the matrices E
v,x

, E
w,x

, E
u,y

, E
v,y

and E
w,y

. The
process and manufacturing tolerances (27), (28) and (29),
respectively, are represented as inequality constraints (11)
with

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 I 0 0

0 0 0 I 0

0 0 0 0 I

0 0 −I 0 0

0 0 0 −I 0

0 0 0 0 −I

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. . . . . . (33)

and

b =

⎡
⎢⎢⎢⎢⎢⎣

Δut
Δvt
Δwt
−Δut
−Δvt
−Δwt

⎤
⎥⎥⎥⎥⎥⎦ . . . . . . . . . . . . . . (34)

3.3. Blockboundaries
For a G2 continuous connection of the optimised

curve and an existing original NC program, the λ -
parametrisation, which was investigated by Hadorn [8] for
a quintic Bezier-Spline, is generalised for a B-Spline of
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degree p in the following.
A B-Spline curve shall be computed in order to con-

nect the two given points ra and rb. In the remainder of
this section, a and b refer to the beginning and the end
of the curve, respectively. The local Frenet frames at the
beginning and the end of the curve are given as θ a and
θ b, respectively. Boundary conditions for the curvature
are given by κa at s = 0 and κb at s = 1. If there are linear
axes and r̃(s) is connected with common NC-blocks like
straight lines and circular arcs, the following demands on
the parametric derivatives at the start

ra = r̃(s = 0) . . . . . . . . . . . (35)
λaet,a = r̃′(s = 0) . . . . . . . . . . (36)

κa =
|r̃′(s = 0)× r̃′′(s = 0)|

|r̃′(s = 0)|3 . . . . . (37)

0 = r̃′(s = 0) · r̃′′(s = 0) . . . . . . (38)

and the end of the curve

rb = r̃(s = 1) . . . . . . . . . . . (39)
λbet,e = r̃′(s = 1) . . . . . . . . . . (40)

κb =
|r̃′(s = 1)× r̃′′(s = 1)|

|r̃′(s = 1)|3 . . . . . (41)

0 = r̃′(s = 1) · r̃′′(s = 1) . . . . . . (42)

occur in order to fulfill the given boundary conditions de-
scribed above.

Since only clamped curves defined by the knot se-
quence (8) are used in this work, r̃(s) interpolates the first
and the last control point, so G0 and C0 continuity are en-
sured by a0 = ra and an = rb.

According to Piegl and Tiller [14], the first two para-
metric derivatives of a B-Spline of degree p for s = 0 and
s = 1 are defined as

r′(s = 0) =
p

up+1
(a1 −a0) . . . . . . . . (43)

r′(s = 1) =
p

1−um−p−1
(an −an−1) . . . . . (44)

r′′(s = 0) =
p(p−1)

up+1(
a0

up+1
− (up+1 +up+2)a1

up+1up+2
+

a2
up+2

)
(45)

r′′(s = 1) =
p(p−1)

1−um−p−1(
an

1−um−p−1
+

an−2

1−um−p−2

− (2−um−p−1 −um−p−2)an−1

(1−um−p−1)(1−um−p−2)

)
. (46)

As already defined by Hadorn [8], the 6 λ -parameters
λ0 . . .λ5 are introduced in order to ensure a G2-continuous
movement of the control points at the start and the end of
r̃(s) on the osculating plane spanned by the local Frenet

XZ

Y

a0

a1

a2

λ0

λ1

λ2

et,aen,a

eb,a

ra

Fig. 4. λ -parametrisation for the begin of a B-Spline. As de-
fined in (47) and (48) by modification of λ0 . . .λ2 the control
points a1 and a2 are moved on the osculating plane spanned
by the local Frenet frame θa.

frames θ a and θ b, which is evaluated at the transitions
between r̃(s) and r(s). According to Fig. 4, the control
points at the start and the end of r̃(s) are defined as

a1 = a0 +λ0et,a . . . . . . . . . . . (47)
a2 = a0 +λ1et,a +λ2en,a . . . . . . . (48)

an−1 = an −λ5et,e . . . . . . . . . . . (49)
an−2 = an −λ4et,e +λ3en,e. . . . . . . . (50)

Insertion of (47)-(50) in (43)-(46) leads to

λ1 = λ0
up+1 +up+2

up+1
. . . . . . . . . (51)

λ2 =
κaup+2λ 2

0 p
up+1(p−1)

. . . . . . . . . . (52)

λ4 = λ5
um−p−1 +um−p−2 −2

um−p−1 −1
. . . . . (53)

λ3 =
κb(um−p−2 −1)λ 2

5 p
(um−p−1 −1)(p−1)

. . . . . . . (54)

for the fulfillment of (35) -(42). Obviously λ0 and λ5 are
free parameters for the shaping of the curve while ensur-
ing the continuity conditions at the boundaries described
above. The λ -parameterisation is part of the optimisa-
tion since (51)-(54) can be established as additional linear
constraints.

3.4. Parametrisation
While the optimisation problem with respect to the

given constraints and boundaries is formulated, some pa-
rameters are still free. These are the number m of con-
trol points, which are used for the optimisation, the de-
gree p of the B-Spline, and the additional weights ηk in
the cost function (12). In order to retain the convexity
of the underlying optimisation problem, these parameters
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Fig. 5. Deviation in normal direction of the tool path in
response to the tuple of the used weighting factors η .

are varied iteratively and evaluated on different geome-
tries in order to identify a parameter set with maximum
productivity.

The shape of the resulting B-Spline is influenced by the
number of control points. The fewer the points, the more
global the behavior of the optimised curve.

In (12), the different parametric derivatives of r(s) are
weighted by ηk. The effect of the parameter weighting
for a quintic B-Spline is exemplified on a planar rectan-
gular corner with a permissible deviation of 50 μm in the
normal direction, as can be seen in Fig. 5. The following
tuples η i are used for the optimisation.

η1 = {1,0,0,0}: Minimum of the parametric speed
η

2
= {0,1,0,0}: Minimum of the parametric acc.

η
3
= {0,0,1,0}: Minimum of the parametric jerk

η4 = {0,0,0,1}: Minimum of the parametric jerk-rate

As can be seen in Fig. 5, the weighting of the paramet-
ric jerk η3 and of the parametric jerk-rate η4 leads to un-
intended oscillations in the shape of the B-Spline. This is
caused by the different order of magnitude of the differ-
ent parametric derivatives, so small changes in function
values of the higher derivatives lead to large changes in
the function values of the lower derivatives. Thus, only
a minimisation of the parametric speed and acceleration
will result in a curve r̃(s) of adequate shape. Knowing
that the arc length of a spatial curve is influenced by the
parametric speed r′(s), a minimisation with η1 leads to
a minimisation of the arc length and a high local curva-
ture. An adequate shape is obtained using η2, which is
proportional to the parametric acceleration and the cur-
vature, respectively. According to Beudaert et al. [3], a
minimisation of the second parametric derivative, which
is proportional to the curvature (4), leads to a smooth tra-
jectory. This leads to η = {0,1,0,0}.

Table 1. Maximum Velocity and maximum acceleration of
the simulated machine tool.

Max. Velocity Max. Acceleration
X-axis 100 m/min 0.9 g
Y-axis 100 m/min 1 g
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Fig. 6. Machine model of the 5-axis cutting machine tool.

4. Simulation

In the following, the simulation environment including
a machine model and a virtual CNC are presented.

4.1. Virtual CNC
Since this paper is about geometry optimisation, the

feed rate for the illustration of the effects of the DGO is
obtained using a virtual CNC. The virtual CNC is com-
mercial software, presented by Bretschneider and Men-
zel [6], for the purpose of validating given NC-Code. It
consists of an image of a Siemens 840D open loop con-
troller of a 5-axis machine tool with the feed rate con-
straints for the X- and Y -axis listed in Table 1. The output
of the virtual CNC is a time-discrete representation of the
feed rate along the tool path, which is specified in the NC-
Code. A limitation of the Z-axis is not necessary because
the example is 2-dimensional.

For the evaluation of a time-discrete profile of the feed
rate, the optimised geometry r̃(s), available as a B-Spline,
is converted into NC-Code and given to the open loop
controller. The execution of the resulting NC-Code leads
to the required time-discrete profile of the feed rate, which
is given to a machine model for the simulation of the con-
touring error.

4.2. Machine Model
Figure 6 shows a machine model, based on Nguyen et

al. [11] and explained in the following. It is a rigid-body
model including a model for the control system.
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Fig. 7. 2D geometry which is optimised with the DGO using
the parameters which are identified in 3.4. The clockwise
motion starts in (0,0).
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Fig. 8. Programmed deviation in orthogonal direction be-
tween r(s) and r̃(s) along the tool path.

In the low to medium frequency range in machine tools,
motion primarily takes place in the coupling locations be-
tween the mechanical machine components, such as the
linear guideways or rotary bearings. Therefore, the de-
formation behavior in the low to medium frequency range
is actually given by the deflection of these coupling ele-
ments. This allows for an approach with multi body dy-
namics, which finally leads to results comparable to those
obtained by Finite Element Methods.

The model structure shown in Fig. 6 is coupled with a
control system. The machine tool can therefore be sim-
ulated with regard to its structural behavior as well as its
control parameters even in an early phase of the machine
tool design. In this context, the model explained above
is used for the simulation of the system response of an
existing machine tool.

5. Application Example

To illustrate the effects of the DGO on machine oscil-
lations and the resulting feed rate, the planar geometry
shown in Fig. 7 is rounded with a global tolerance value
in the normal direction of the tool path of 50 μm. The
exploitation of the given tolerance in the normal direction
is shown in Fig. 8. Using the parametrisation described
above leads to r̃(s), which is inserted into the virtual CNC
in order to obtain a time-discrete feed rate profile. This is
applied to the described machine model.

Regarding the resulting feed rate profile for the refer-
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Fig. 9. Feed rate profiles, generated by the virtual CNC
for the original geometry (red) and the optimised geometry
(green). Due to the decreased speed drops of the optimised
geometry, a time saving of 20% is achieved.
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Fig. 10. Spatial deviation between the TCP and the linear
encoders of the machine tool axes.

ence geometry r(s), shown in Fig. 9, speed drops at the
transitions between the different NC-blocks occur. The
geometry r̃(s) carried out by the DGO is G2 continuous,
therefore, providing a better feed rate since speed drops at
transitions are significantly reduced. This leads to a time
savings of 20%.

In order to evaluate the mechanical excitation of the
machine tool, the machine model described in section 4 is
used. The resulting modeled deviation Δn at the TCP con-
sists of systematic errors Δsmt caused by the smoothing of
r(s), follow-up errors Δ f up generated inside of the closed
loop controller, and dynamic errors Δdyn with respect to
(55).

Δn = Δsmt +Δ f up +Δdyn . . . . . . . . . (55)

The dynamic errors Δdyn as well as the follow-up errors
Δ f up are separated by the evaluation of the spatial differ-
ence between the linear encoders of the machine tool axes
and the TCP. As can be seen in Fig. 10, the maximum spa-
tial deviation between the TCP and the linear encoders of
the machine tool axes (and therefore the mechanical exci-
tation) can be reduced slightly through optimisation.
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6. Conclusion

The presented DGO minimises the weighted sum of the
parametric derivatives of different axes while ensuring the
geometric constraints and boundaries, which are given by
the manufacturing tolerances. The optimised geometry is
described by B-Splines. As the problem formulation for
the optimisation is convex, the optimisation succeeds for
all given optimisation cases, assuming there is a feasible
solution. With this method, both the rounding of transi-
tions of adjoining NC-blocks and the global smoothing of
multiple short NC-blocks are accomplished. On the basis
of an application example, it is shown that the presented
method not only decreases machine excitations but also
increases the feed rate, thus increasing productivity. Ge-
ometry optimisation alone does not usually generate time-
optimal curves. For this, further studies should focus on
subsequent and combined optimisation of set point gener-
ation.
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Brief Biographical History:
2009 Graduated Masters of Mechanical Engineering ETH Zürich
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Address:
Tannenstrasse 3, 8092 Zürich, Switzerland
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