Paper:
Pendulum Model-Less Inversion
Hideki Toda*, Masahiro Sekimoto*
, Junji Ohyama**
, and Hiroaki Kawamoto***
*Faculty of Engineering, University of Toyama
3190 Gofuku, Toyama, Toyama 930-8555, Japan
**Human Augmentation Research Center, National Institute of Advanced Industrial Science and Technology (AIST)
1-1-1 Higashi, Tsukuba, Ibaraki 305-8560, Japan
***Institute of Systems and Information Engineering, University of Tsukuba
1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
This paper presents a novel approach to inverted pendulum control and unstable equilibrium angle (UEA) estimation through a proposed velocity suppression mechanism implemented in a single code. The key innovation lies in achieving control using solely an integral controller whose parameters satisfy a specific velocity suppression condition. Traditional inverted pendulum systems face a fundamental challenge: the arduous task of finding optimal proportional–differential–integral parameters, complicated by the system’s inherent sensitivity to minor physical variations (such as pendulum weight, length, distortion, and cart-rail friction). Our solution introduces a streamlined integral controller that includes the pendulum’s position, velocity parameters (θ, dotθ), achieving stabilization through the proposed mechanism. This same mechanism is effectively utilized for UEA estimation. The effectiveness was demonstrated on an unknown layout, weight, and moment pendulum inversion with unknown friction or deteriorated effect of 12-years-old device. This work signals a paradigm shift away from complex, model-dependent approaches to more practical, adaptive solutions.
- [1] S. Seok et al., “Design principles for energy-efficient legged locomotion and implementation on the MIT Cheetah robot,” IEEE/ASME Trans. on Mechatronics, Vol.20, No.3, pp. 117-129, 2015. https://doi.org/10.1109/TMECH.2014.2339013
- [2] K. J. Åström and R. M. Murray, “Feedback Systems: An Introduction for Scientists and Engineers,” Princeton University Press, 2008.
- [3] K. J. Åström and T. Hägglund, “Advanced PID Control,” International Society of Automation, 2005.
- [4] R. H. Bishop, “Modern Control Systems Analysis and Design Using MATLAB and Simulink,” Addison-Wesley, 1997.
- [5] G. F. Franklin, J. Da Powell, and A. Emami-Naeini, “Feedback Control of Dynamic Systems (7th Edition),” Pearson, 2014.
- [6] S. Goto, M. Nakamura, and N. Kyura, “Method for determining encoder resolution in mechatronic software servo systems based on control requirement,” J. of the Japan Society for Precision Engineering, Vol.65, No.7, pp. 1026-1029, 1999 (in Japanese). https://doi.org/10.2493/jjspe.65.1026
- [7] L. G. Lobas, L. D. Patricio, and I. G. Boruk, “Equilibrium of an inverted mathematical double-link pendulum with a follower force,” Int. Applied Mechanics, Vol.38, No.3, pp. 372-376, 2002. https://doi.org/10.1023/A:1016098615226
- [8] B. R. Andrievsky, “Global stabilization of the unstable reaction-wheel pendulum,” Automation and Remote Control, Vol.72, No.9, pp. 1981-1993, 2011. https://doi.org/10.1134/S0005117911090189
- [9] M. S. Krieger, “Interfacial fluid instabilities and Kapitsa pendula,” The European Physical J. E, Vol.40, No.7, Article No.67, 2017. https://doi.org/10.1140/epje/i2017-11556-x
- [10] S. Adachi, “Fundamentals of System Identification,” Tokyo Denki University Press, 2009 (in Japanese).
- [11] J. Denavit and R. S. A. Hartenberg, “A kinematic notation for lower-pair mechanisms based on matrices,” J. of Applied Mechanics, Vol.22, No.2, pp. 215-221, 1955. https://doi.org/10.1115/1.4011045
- [12] K. Zhou, J. C. Doyle, and K. Glover, “Robust and Optimal Control (1st Edition),” Pearson, 1995.
- [13] J. M. Maciejowski, “Predictive Control with Constrains,” (S. Adachi and M. Kanno (Trans.)), Tokyo Denki University Press, 2005 (in Japanese).
- [14] S. Collins, A. Ruina, R. Tedrake, and M. Wisse, “Efficient bipedal robots based on passive-dynamic walkers,” Science, Vol.307, No.5712, pp. 1082-1085, 2005. https://doi.org/10.1126/science.1107799
- [15] R. Hanus, M. Kinnaert, and J. L. Henrotte, “Conditioning technique, a general anti-windup and bumpless transfer method,” Automatica, Vol.23, No.6, pp. 729-739, 1987. https://doi.org/10.1016/0005-1098(87)90029-X
- [16] H. K. Khalil, “Nonlinear Systems (3rd Edition),” Prentice Hall, 2002.
- [17] F. Heslot, T. Baumberger, B. Perrin, B. Caroli, and C. Caroli, “Creep, stick-slip, and dry-friction dynamics: Experiments and a heuristic model,” Physical Review E, Vol.49, No.6, pp. 4973-4988, 1994. https://doi.org/10.1103/PhysRevE.49.4973
- [18] J. Richalet, A. Rault, J. L. Testud, and J. Papon, “Model predictive heuristic control: Applications to industrial processes,” Automatica, Vol.14, No.5, pp. 413-428, 1978. https://doi.org/10.1016/0005-1098(78)90001-8
- [19] D. Dowson, “History of Tribology,” Longman, 1979.
- [20] B. Porat, “A Course in Digital Signal Processing,” John Wiley & Sons, 1996.
- [21] A. D. Myers, J. R. Tempelman, D. Petrushenko, and F. A. Khasawneh, “Low-cost double pendulum for high-quality data collection with open-source video tracking and analysis,” HardwareX, Vol.8, Article No.e00138, 2020. https://doi.org/10.1016/j.ohx.2020.e00138
- [22] W. Abend, E. Bizzi, and P. Morasso, “Human arm trajectory formation,” Brain, Vol.105, No.2, pp. 331-348, 1982. https://doi.org/10.1093/brain/105.2.331
- [23] N. Hogan, “An organizing principle for a class of voluntary movements,” J. of Neuroscience, Vol.4, No.11, pp. 2745-2754, 1984. https://doi.org/10.1523/jneurosci.04-11-02745.1984
- [24] M. Katayama and M. Kawato, “Virtual trajectory and stiffness ellipse during multijoint arm movement predicted by neural inverse models,” Biological Cybernetics, Vol.69, No.5, pp. 353-362, 1993. https://doi.org/10.1007/BF00199435
- [25] S. K. Mustafa, G. Yang, S. H. Yeo, W. Lin, and I.-M. Chen, “Self-calibration of a biologically inspired 7 DOF cable-driven robotic arm,” IEEE/ASME Trans. on Mechatronics, Vol.13, No.1, pp. 66-75, 2008. https://doi.org/10.1109/TMECH.2007.915024
- [26] H. Toda, T. Kobayakawa, and Y. Sankai, “A multi-link system control strategy based on biological reaching movement,” Advanced Robotics, Vol.20, No.6, pp. 661-679, 2006. https://doi.org/10.1163/156855306777361613
- [27] G. F. Franklin, J. Da Powell, and A. Emami-Naeini, “Feedback Control of Dynamic Systems (8th Edition),” Pearson, 2019.
- [28] S. Arimoto, “Optimal feedback control minimizing the effects of noise disturbances,” Trans. of the Society of Instrument and Control Engineers, Vol.2, No.1, pp. 1-7, 1966 (in Japanese). https://doi.org/10.9746/sicetr1965.2.1
- [29] J. E. Potter, “Matrix quadratic solutions,” SIAM J. on Applied Mathematics, Vol.14, No.3, pp. 496-501, 1966. https://doi.org/10.1137/0114044
- [30] S. Adachi, “Control Theory in MATLAB,” Tokyo Denki University Press, 1999 (in Japanese).
- [31] J.-J. E. Slotine and W. Li, “On the adaptive control of robot manipulators,” The Int. J. of Robotics Research, Vol.6, No.3, pp. 49-59, 1987. https://doi.org/10.1177/027836498700600303
- [32] S Arimoto, “New Edition: Robot Dynamics and Control,” Asakura Publishing Co., Ltd., pp. 130-142, 2002 (in Japanese).
- [33] S. Arimoto, “Control theory of non-linear mechanical systems: A passivity-based and circuit-theoretic approach,” Oxford University Press, 1996. https://doi.org/10.1093/oso/9780198562917.001.0001
- [34] M. Sekimoto and S. Arimoto, “A natural redundancy-resolution for 3-D multi-joint reaching under the gravity effect,” J. of Robotic Systems, Vol.22, No.11, pp. 607-623, 2005.
- [35] H. Wang, “Adaptive control of robot manipulators with uncertain kinematics and dynamics,” IEEE Trans. on Automatic Control, Vol.62, No.2, pp. 948-954, 2017. https://doi.org/10.1109/TAC.2016.2575827
- [36] M. Homayounzade and M. Keshmiri, “Noncertainty equivalent adaptive control of robot manipulators without velocity measurements,” Advanced Robotics, Vol.28, No.14, pp. 983-996, 2014. https://doi.org/10.1080/01691864.2014.899163
- [37] G. Niemeyer and J.-J. E. Slotine, “Performance in adaptive manipulator control,” The Int. J. of Robotics Research, Vol.10, No.2, pp. 149-161, 1991. https://doi.org/10.1177/027836499101000206
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.