single-rb.php

JRM Vol.37 No.5 pp. 1205-1218
doi: 10.20965/jrm.2025.p1205
(2025)

Paper:

HFR-Video-Based Vibration Analysis of a Multi-Jointed Robot Manipulator

Tuniyazi Abudoureheman ORCID Icon, Feiyue Wang ORCID Icon, Kohei Shimasaki ORCID Icon, and Idaku Ishii ORCID Icon

Graduate School of Advanced Science and Engineering, Hiroshima University
1-4-1 Kagamiyama, Higashi-hiroshima, Hiroshima 739-8527, Japan

Received:
March 8, 2025
Accepted:
June 26, 2025
Published:
October 20, 2025
Keywords:
vibration test, robot health monitoring, digital image correlation, frequency response, short-time Fourier transform
Abstract

As the demand for industrial robots continues to increase, monitoring robot manipulators in factory environments has become essential to ensure proper and precise operation. Unexpected vibrations can reduce the production efficiency and quality, causing financial losses, and safety risks to workers. Evaluating a robot’s vibration resistance solely through arm movements makes it challenging to accurately capture fine vibration-frequency responses using conventional methods. Traditional analyses rely on contact sensors, which are limited by the number of measurable points, and often involve high costs. In this study, we employed high-frame-rate (HFR) cameras for non-contact vibration analysis, enabling a detailed evaluation of the vibration characteristics during robot operation. By processing the 500 fps HFR video using digital image correlation, we analyzed the frequency responses of sub-pixel displacements at multiple locations and quantified changes in the vibration amplitude and phase across different parts of the robot. This approach provides a more precise understanding of fine vibration distributions and their impacts. The proposed method is accurate and can simultaneously measure multiple points.

Power spectograms of output/input ratio

Power spectograms of output/input ratio

Cite this article as:
T. Abudoureheman, F. Wang, K. Shimasaki, and I. Ishii, “HFR-Video-Based Vibration Analysis of a Multi-Jointed Robot Manipulator,” J. Robot. Mechatron., Vol.37 No.5, pp. 1205-1218, 2025.
Data files:
References
  1. [1] B. Tipary, A. Kovács, and F. G. Erdős, “Planning and optimization of robotic pick-and-place operations in highly constrained industrial environments,” Assembly Automation, Vol.41, Issue 5, pp. 626-639, 2021. https://doi.org/10.1108/AA-07-2020-0099
  2. [2] D. Liu and J. Fang, “Vibration reduction of flexible fruit picking robot by adaptive input shaping method,” 2016 Int. Conf. on Advanced Mechatronic Systems (ICAMechS), pp. 169-173, 2016. https://doi.org/10.1109/ICAMechS.2016.7813441
  3. [3] R. Hiraoka, K. Kobayashi, and Y. Aoyagi, “Simulation of vibration caused by an automatic transporter on harvested products,” 2022 Joint 12th Int. Conf. on Soft Computing and Intelligent Systems and 23rd Int. Symp. on Advanced Intelligent Systems (SCIS&ISIS), 2022. https://doi.org/10.1109/SCISISIS55246.2022.10001905
  4. [4] C. G. Cooley and R. G. Parker, “A Review of Planetary and Epicyclic Gear Dynamics and Vibrations Research,” Applied Mechanics Reviews, Vol.66, Issue 4, Article No.040804, 2014. https://doi.org/10.1115/1.4027812
  5. [5] M. Romanssini, P. C. C. de Aguirre, L. Compassi-Severo, and A. G. Girardi, “A Review on Vibration Monitoring Techniques for Predictive Maintenance of Rotating Machinery,” Eng, Vol.4, Issue 3, pp. 1797-1817, 2023. https://doi.org/10.3390/eng4030102
  6. [6] C. S. Franklin, E. G. Dominguez, J. D. Fryman, and M. L. Lewandowski, “Collaborative robotics: New era of human-robot cooperation in the workplace,” J. of Safety Research, Vol.74, pp. 153-160, 2020. https://doi.org/10.1016/j.jsr.2020.06.013
  7. [7] R. Natarajan, S. Reddy P, S. C. Bose, H. L. Gururaj, F. Flammini, and S. Velmurugan, “Fault detection and state estimation in robotic automatic control using machine learning,” Array, Vol.19, Article No.100298, 2023. https://doi.org/10.1016/j.array.2023.100298
  8. [8] W. Zhang and J. Zhou, “Fault Diagnosis for Rolling Element Bearings Based on Feature Space Reconstruction and Multiscale Permutation Entropy,” Entropy, Vol.21, Issue 5, Article No.519, 2019. https://doi.org/10.3390/e21050519
  9. [9] L. Zhang, Y. Li, L. Dong, X. Yang, X. Ding, Q. Zeng, L. Wang, and Y. Shao, “Gearbox Fault Diagnosis Using Multiscale Sparse Frequency-Frequency Distributions,” IEEE Access, Vol.9, pp. 113089-113099, 2021. https://doi.org/10.1109/ACCESS.2021.3104281
  10. [10] A. H. Sabry and U. A. B. U. Amirulddin, “A review on fault detection and diagnosis of industrial robots and multi-axis machines,” Results in Engineering, Vol.23, Article No.102397, 2024. https://doi.org/10.1016/j.rineng.2024.102397
  11. [11] A. P. Daga and L. Garibaldi, “Machine Vibration Monitoring for Diagnostics through Hypothesis Testing,” Information, Vol.10, Issue 6, Article No.204, 2019. https://doi.org/10.3390/info10060204
  12. [12] S. Shao, S. McAleer, R. Yan, and P. Baldi, “Highly Accurate Machine Fault Diagnosis Using Deep Transfer Learning,” IEEE Trans. on Industrial Informatics, Vol.15, Issue 4, pp. 2446-2455, 2019. https://doi.org/10.1109/TII.2018.2864759
  13. [13] Y. Kim, J. Park, K. Na, H. Yuan, B. D. Youn, and C.-s. Kang, “Phase-based time domain averaging (PTDA) for fault detection of a gearbox in an industrial robot using vibration signals,” Mechanical Systems and Signal Processing, Vol.138, Article No.106544, 2020. https://doi.org/10.1016/j.ymssp.2019.106544
  14. [14] A. A. Jaber and R. Bicker, “Design of a Wireless Sensor Node for Vibration Monitoring of Industrial Machinery,” Int. J. of Electrical and Computer Engineering (IJECE), Vol.6, No.2, pp. 639-653, 2016. https://doi.org/10.11591/ijece.v6i2.9296
  15. [15] H. Khan, M. D’Imperio, F. Cannella, D. G. Caldwell, A. Cuschieri, and C. Semini, “Towards Scalable Strain Gauge-Based Joint Torque Sensors,” Sensors, Vol.17, Issue 8, Article No.1905, 2017. https://doi.org/10.3390/s17081905
  16. [16] Y. Chen, X. Zheng, Y. Luo, Y. Shen, Y. Xue, and W. Fu, “An Approach for Time Synchronization of Wireless Accelerometer Sensors Using Frequency-Squeezing-Based Operational Modal Analysis,” Sensors, Vol.22, Issue 13, Article No.4784, 2022. https://doi.org/10.3390/s22134784
  17. [17] D. A. Elvira-Ortiz, R. de. J. Romero-Troncoso, A. Y. Jaen-Cuellar, L. Morales-Velazquez, and R. A. Osornio-Rios, “Vibration Suppression for Improving the Estimation of Kinematic Parameters on Industrial Robots,” Shock and Vibration, 2016. https://doi.org/10.1155/2016/6954012
  18. [18] I. Ishii, T. Tatebe, Q. Gu, Y. Moriue, T. Takaki, and K. Tajima, “2000 fps real-time vision system with high-frame-rate video recording,” 2010 IEEE Int. Conf. on Robotics and Automation, pp. 1536-1541, 2010. https://doi.org/10.1109/ROBOT.2010.5509731.
  19. [19] Y. Watanabe, T. Komuro, and M. Ishikawa, “955-fps Real-time Shape Measurement of a Moving/Deforming Object Using High-speed Vision for Numerous-point Analysis,” Proc. of 2007 IEEE Int. Conf. on Robotics and Automation, pp. 3192-3197, 2007. https://doi.org/10.1109/ROBOT.2007.363965
  20. [20] J. Luo, B. Liu, P. Yang, and X. Fan, “High-speed vision measurement of vibration based on an improved ZNSSD template matching algorithm,” Systems Science & Control Engineering, Vol.10, Issue 1, pp. 43-54, 2022. https://doi.org/10.1080/21642583.2021.2024099
  21. [21] D. K. Thomsen, R. Søe-Knudsen, O. Balling, and X. Zhang, “Vibration control of industrial robot arms by multi-mode time-varying input shaping,” Mechanism and Machine Theory, Vol.155, Article No.104072, 2021. https://doi.org/10.1016/j.mechmachtheory.2020.104072
  22. [22] F. L. M. dos Santos, B. Peeters, J. Lau, W. Desmet, and L. C. S. Goes, “The use of strain gauges in vibration-based damage detection,” J. of Physics: Conf. Series, Vol.628, Article No.012119, 2015. https://doi.org/10.1088/1742-6596/628/1/012119
  23. [23] D. Rovšček, J. Slavič, and M. Boltežar, “The use of strain sensors in an experimental modal analysis of small and light structures with free-free boundary conditions,” J. of Vibration and Control, Vol.19, Issue 7, pp. 1072-1079, 2013. https://doi.org/10.1177/1077546312445058
  24. [24] S. Miyabe, N. Ono, and S. Makino, “Blind compensation of inter-channel sampling frequency mismatch with maximum likelihood estimation in STFT domain,” 2013 IEEE Int. Conf. on Acoustics, Speech and Signal Processing, pp. 674-678, 2013. https://doi.org/10.1109/ICASSP.2013.6637733
  25. [25] R. P. Linessio, K. de M. Sousa, T. da Silva, C. A. Bavastri, P. F. da C. Antunes, and J. C. C. da Silva, “Induction Motors Vibration Monitoring Using a Biaxial Optical Fiber Accelerometer,” IEEE Sensors J., Vol.16, Issue 22, pp. 8075-8082, 2016. https://doi.org/10.1109/JSEN.2016.2604850
  26. [26] S. Nakamura, Y. Higashi, A. Masuda, and A. Tanaka, “Development of Vibration Measurement Unit for Steel Structure Using MEMS Accelerometer,” 2018 IEEE Region 10 Conf. (TENCON 2018), pp. 587-592, 2018. https://doi.org/10.1109/TENCON.2018.8650363
  27. [27] A. Gude, S. Pawar, S. Alhat, and S. Mishra, “Vibration Analysis for Engine fault Detection,” J. of Robotics and Control (JRC), Vol.2, No.3, 2021. https://doi.org/10.18196/jrc.2379
  28. [28] S. H. Gawande and R. R. More, “Effect of Notch Depth & Location on Modal Natural Frequency of Cantilever Beams,” Structures, Vol.8, Part 1, pp. 121-129, 2016. https://doi.org/10.1016/j.istruc.2016.09.003
  29. [29] D. Feng and M. Q. Feng, “Identification of structural stiffness and excitation forces in time domain using noncontact vision-based displacement measurement,” J. of Sound and Vibration, Vol.406, pp. 15-28, 2017. https://doi.org/10.1016/j.jsv.2017.06.008
  30. [30] D. L. Brown, R. J. Allemang, and A. W. Phillips, “Forty Years of Use and Abuse of Impact Testing: A Practical Guide to Making Good FRF Measurements,” J. De Clerck (Ed.), “Experimental Techniques, Rotating Machinery, and Acoustics, Vol.8,” pp. 221-241, River Publishers, 2015. https://doi.org/10.1007/978-3-319-15236-3_21
  31. [31] H. Nakagawa, Y. Kurita, K. Ogawa, Y. Sugiyama, and H. Hasegawa, “Experimental Analysis of Chatter Vibration in End-Milling Using Laser Doppler Vibrometers,” Int. J. Automation Technol., Vol.2, No.6, pp. 431-438, 2008. https://doi.org/10.20965/ijat.2008.p0431
  32. [32] Y. Li, E. Dieussaert, and R. Baets, “Miniaturization of Laser Doppler Vibrometers—A Review,” Sensors, Vol.22, Issue 13, Article No.4735, 2022. https://doi.org/10.3390/s22134735
  33. [33] P. Castellini, M. Martarelli, and E. P. Tomasini, “Laser Doppler Vibrometry: Development of advanced solutions answering to technology’s needs,” Mechanical Systems and Signal Processing, Vol.20, Issue 6, pp. 1265-1285, 2006. https://doi.org/https://doi.org/10.1016/j.ymssp.2005.11.015
  34. [34] J. Eichenberger and J. Sauer, “Validating Complex Models Accurately and Without Contact Using Scanning Laser Doppler Vibrometry (SLDV),” D. Di Maio and J. Baqersad (Eds.), “Rotating Machinery, Optical Methods & Scanning LDV Methods, Vol.6,” pp. 113-124, River Publishers, 2022. https://doi.org/10.1007/978-3-030-76335-0_11
  35. [35] G. Rossi, R. Marsili, V. Gusella, and M. Gioffrè, “Comparison Between Accelerometer and Laser Vibrometer to Measure Traffic Excited Vibrations on Bridges,” Shock and Vibration, 2002. https://doi.org/10.1155/2002/968509
  36. [36] K. Yuan and W. D. Zhu, “A novel general-purpose three-dimensional continuously scanning laser Doppler vibrometer system for full-field vibration measurement of a structure with a curved surface,” J. of Sound and Vibration, Vol.540, Article No.117274, 2022. https://doi.org/https://doi.org/10.1016/j.jsv.2022.117274
  37. [37] D. Di Maio, P. Castellini, M. Martarelli, S. Rothberg, M. S. Allen, W. D. Zhu, and D. J. Ewins, “Continuous Scanning Laser Vibrometry: A raison d’être and applications to vibration measurements,” Mechanical Systems and Signal Processing, Vol.156, Article No.107573, 2021. https://doi.org/https://doi.org/10.1016/j.ymssp.2020.107573
  38. [38] J. Y. Jeon, Y. Miao, G. Park, and E. Flynn, “Compressive laser scanning with full steady state wavefield for structural damage detection,” Mechanical Systems and Signal Processing, Vol.169, Article No.108626, 2022. https://doi.org/https://doi.org/10.1016/j.ymssp.2021.108626
  39. [39] W. Yeo and M. Matsumoto, “Fault Diagnosis Systems for Robots: Acoustic Sensing-Based Identification of Detached Components for Fault Localization,” Applied Sciences, Vol.15, Issue 12, Article No.6564, 2025. https://doi.org/10.3390/app15126564
  40. [40] S.-Q. Zhang, X.-Y. Zhang, H.-L. Ji, S.-S. Ying, and R. Schmidt, “A refined disturbance rejection control for vibration suppression of smart structures under unknown disturbances,” J. of Low Frequency Noise, Vibration and Active Control, Vol.40, Issue 1, pp. 427-441, 2021. https://doi.org/10.1177/1461348419875351
  41. [41] I. Ishii, T. Taniguchi, K. Yamamoto, and T. Takaki, “High-Frame-Rate Optical Flow System,” IEEE Trans. on Circuits and Systems for Video Technology, Vol.22, Issue 1, pp. 105-112, 2012. https://doi.org/10.1109/TCSVT.2011.2158340
  42. [42] F. Wang, S. Hu, K. Shimasaki, and I. Ishii, “Real-Time Vibration Visualization Using GPU-Based High-Speed Vision,” J. Robot. Mechatron., Vol.34, No.5, pp. 1011-1023, 2022. https://doi.org/10.20965/jrm.2022.p1011
  43. [43] K. Shimasaki, M. Jiang, T. Takaki, and I. Ishii, “Real-time Multicopter Detection Using Pixel-level Digital Filters for Frame-Interpolated High-frame-rate Images,” 2018 IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics (AIM), pp. 304-309, 2018. https://doi.org/10.1109/AIM.2018.8452345
  44. [44] M. Jiang, T. Aoyama, T. Takaki, and I. Ishii, “Pixel-Level and Robust Vibration Source Sensing in High-Frame-Rate Video Analysis,” Sensors, Vol.16, Issue 11, Article No.1842, 2016. https://doi.org/10.3390/s16111842
  45. [45] S. Cao, J. Yan, H. Nian, and C. Xu, “Full-field out-of-plane vibration displacement acquisition based on speckle-projection digital image correlation and its application in damage localization,” Int. J. of Mechanical System Dynamics, Vol.2, Issue 4, pp. 363-373, 2022. https://doi.org/10.1002/msd2.12055
  46. [46] M. Ye, J. Liang, L. Li, B. Qian, M. Ren, M. Zhang, W. Lu, and Y. Zong, “Full-field motion and deformation measurement of high speed rotation based on temporal phase-locking and 3D-DIC,” Optics and Lasers in Engineering, Vol.146, Article No.106697, 2021. https://doi.org/10.1016/j.optlaseng.2021.106697
  47. [47] S. Hu, M. Jiang, T. Takaki, and I. Ishii, “Real-Time Monocular Three-Dimensional Motion Tracking Using a Multithread Active Vision System,” J. Robot. Mechatron., Vol.30, No.3, pp. 453-466, 2018. https://doi.org/10.20965/jrm.2018.p0453
  48. [48] Z. Azouz, B. H. S. Asli, and M. Khan, “Potential of Non-Contact Dynamic Response Measurements for Predicting Small Size or Hidden Damages in Highly Damped Structures,” Sensors, Vol.24, Issue 18, Article No.5871, 2024. https://doi.org/10.3390/s24185871
  49. [49] T. J. Beberniss and D. A. Ehrhardt, “High-speed 3D digital image correlation vibration measurement: Recent advancements and noted limitations,” Mechanical Systems and Signal Processing, Vol.86, Part B, pp. 35-48, 2017. https://doi.org/https://doi.org/10.1016/j.ymssp.2016.04.014
  50. [50] S. F. Zettel, M. Norambuena, R. D. Dewald, and M. Böswald, “Comparison of laser Doppler vibrometry and digital image correlation measurement techniques for applications in vibroacoustics,” 29th Int. Congress on Sound and Vibration (ICSV), 2023.
  51. [51] D. Feng, M. Q. Feng, E. Ozer, and Y. Fukuda, “A Vision-Based Sensor for Noncontact Structural Displacement Measurement,” Sensors, Vol.15, Issue 7, pp. 16557-16575, 2015. https://doi.org/10.3390/s150716557
  52. [52] P. L. Reu, D. P. Rohe, and L. D. Jacobs, “Comparison of DIC and LDV for practical vibration and modal measurements,” Mechanical Systems and Signal Processing, Vol.86, Part B, pp. 2-16, 2017. https://doi.org/https://doi.org/10.1016/j.ymssp.2016.02.006
  53. [53] K.-H. Kim and H.-K. Jung, “Development of a Remote Displacement Measuring Laser System for Bridge Inspection,” Sensors, Vol.22, Issue 5, Article No.1963, 2022. https://doi.org/10.3390/s22051963
  54. [54] A. Rossi, G. Bocchetta, F. Botta, and A. Scorza, “Accuracy Characterization of a MEMS Accelerometer for Vibration Monitoring in a Rotating Framework,” Applied Sciences, Vol.13, Issue 8, Article No.5070, 2023. https://doi.org/10.3390/app13085070
  55. [55] X. Guo, Y. Fan, D. Liu, and H. Chen, “Vibration sensing system integrating triboelectric nanogenerator and synaptic transistor for self-powered building vibration identification,” Measurement, Vol.249, Article No.116966, 2025. https://doi.org/https://doi.org/10.1016/j.measurement.2025.116966
  56. [56] H. S. Park, J. M. Kim, S. W. Choi, and Y. Kim, “A Wireless Laser Displacement Sensor Node for Structural Health Monitoring,” Sensors, Vol.13, Issue 10, pp. 13204-13216, 2013. https://doi.org/10.3390/s131013204
  57. [57] J. Zhang, J. Sun, Z. Liu, and G. Zhang, “A flexible calibration method for laser displacement sensors based on a stereo-target,” Measurement Science and Technology, Vol.25, No.10, Article No.105103, 2014. https://doi.org/10.1088/0957-0233/25/10/105103
  58. [58] T. Siebert, R. Wood, and K. Splitthof, “High speed image correlation for vibration analysis,” J. of Physics: Conf. Series, Vol.181, Article No.012064, 2009. https://doi.org/10.1088/1742-6596/181/1/012064
  59. [59] Z. Aliansyah, K. Shimasaki, T. Senoo, I. Ishii, and S. Umemoto, “Single-Camera-Based Bridge Structural Displacement Measurement with Traffic Counting,” Sensors, Vol.21, Issue 13, Article No.4517, 2021. https://doi.org/10.3390/s21134517
  60. [60] S. Caliskan and H. Akyuz, “Investigation of the speckle pattern effect for displacement assessments by DIC,” J. of Intelligent Manufacturing and Special Equipment, Vol.5, Issue 2, pp. 245-254, 2024. https://doi.org/10.1108/JIMSE-01-2024-0002
  61. [61] K. Murakami, S. Huang, M. Ishikawa, and Y. Yamakawa, “Fully Automated Bead Art Assembly for Smart Manufacturing Using Dynamic Compensation Approach,” J. Robot. Mechatron., Vol.34, No.5, pp. 936-945, 2022. https://doi.org/10.20965/jrm.2022.p0936
  62. [62] P. Righettini, R. Strada, F. Cortinovis, F. Tabaldi, J. Santinelli, and A. Ginammi, “An Experimental Investigation of the Dynamic Performances of a High Speed 4-DOF 5R Parallel Robot Using Inverse Dynamics Control,” Robotics, Vol.13, Issue 3, Article No.54, 2024. https://doi.org/10.3390/robotics13030054
  63. [63] A. Davidovic, E. H. Huntington, and M. R. Frater, “Experimental investigation of signal-to-noise ratio gain and stochastic resonance for filtered signals in static nonlinearities,” 2008 2nd Int. Conf. on Signal Processing and Communication Systems, 2008. https://doi.org/10.1109/ICSPCS.2008.4813763
  64. [64] J. Swevers, W. Verdonck, and J. De Schutter, “Dynamic Model Identification for Industrial Robots,” IEEE Control Systems Magazine, Vol.27, Issue 5, pp. 58-71, 2007. https://doi.org/10.1109/MCS.2007.904659
  65. [65] R. Sagawa, Y. Higuchi, R. Furukawa, and H. Kawasaki, “Acquisition and Visualization of Micro-Vibration of a Sound Wave in 3D Space,” J. Robot. Mechatron., Vol.34, No.5, pp. 1024-1032, 2022. https://doi.org/10.20965/jrm.2022.p1024
  66. [66] A. Godil, R. Bostelman, K. S. Saidi, W. P. Shackleford, G. S. Cheok, M. Shneier, and T. Hong, “3D Ground-Truth Systems for Object/Human Recognition and Tracking,” 2013 IEEE Conf. on Computer Vision and Pattern Recognition Workshops, pp. 719-726, 2013. https://doi.org/10.1109/CVPRW.2013.109
  67. [67] R. Dhaouadi and I. Hafez, “Identification of Shaft Stiffness and Inertias in Flexible Drive Systems,” J. Robot. Mechatron., Vol.35, No.1, pp. 212-217, 2023. https://doi.org/10.20965/jrm.2023.p0212
  68. [68] D. A. De Souza, J. G. Batista, F. J. S. Vasconcelos, L. L. N. Dos Reis, G. F. Machado, J. R. Costa, J. N. N. Junior, J. L. N. Silva, C. S. N. Rios, and A. B. S. Júnior, “Identification by Recursive Least Squares with Kalman Filter (RLS-KF) Applied to a Robotic Manipulator,” IEEE Access, Vol.9, pp. 63779-63789, 2021. https://doi.org/10.1109/ACCESS.2021.3074419
  69. [69] J. Swevers, C. Ganseman, J. De Schutter, and H. Van Brussel, “Generation of Periodic Trajectories for Optimal Robot Excitation,” J. of Manufacturing Science and Engineering, Vol.119, Issue 4A, pp. 611-615, 1997. https://doi.org/10.1115/1.2831194
  70. [70] A. Stenman, F. Gustafsson, D. E. Rivera, L. Ljung, and T. McKelvey, “On adaptive smoothing of empirical transfer function estimates,” Control Engineering Practice, Vol.8, Issue 11, pp. 1309-1315, 2000. https://doi.org/10.1016/S0967-0661(00)00065-4
  71. [71] Z. Li, S. Zhen, B. Chen, M. Li, R. Liu, and B. Yu, “Lissajous figures in the application of micro-vibration measurement,” Optics Communications, Vol.281, Issue 18, pp. 4744-4746, 2008. https://doi.org/https://doi.org/10.1016/j.optcom.2008.05.049
  72. [72] C. A. Sierra, “Recurrence in Lissajous Curves and the Visual Representation of Tuning Systems,” Foundations of Science, Vol.30, pp. 271-279, 2023. https://doi.org/10.1007/s10699-023-09930-z
  73. [73] M. Van Damme, P. Beyl, B. Vanderborght, V. Grosu, R. Van Ham, I. Vanderniepen, A. Matthys, and D. Lefeber, “Estimating robot end-effector force from noisy actuator torque measurements,” 2011 IEEE Int. Conf. on Robotics and Automation, pp. 1108-1113, 2011. https://doi.org/10.1109/ICRA.2011.5980210
  74. [74] M. Shahbaznia, M. R. Dehkordi, and A. Mirzaee, “An Improved Time-Domain Damage Detection Method for Railway Bridges Subjected to Unknown Moving Loads,” Periodica Polytechnica Civil Engineering, Vol.64, No.3, pp. 928-938, 2020. https://doi.org/10.3311/PPci.15813

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Oct. 19, 2025