Paper:
Synchrony-Induced Attractor Transition in Cortical Neural Networks Organized by Spike-Timing Dependent Plasticity
Takaaki Aoki* and Toshio Aoyagi*,**
*CREST, Japan Science and Technology Corporation, Kyoto 606-8501, Japan
**Department of Applied Analysis and Complex Dynamical Systems, Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan
- [1] T. Aoyagi, “Synchrony-induced switching behavior of spike-pattern attractors created by spike-timing dependent plasticity,” Neural Comput., 19(10), 2007 (in press).
- [2] T. Aoyagi, T. Takekawa, and T. Fukai, “Gamma rhythmic bursts: coherence control in networks of cortical pyramidal neurons,” Neural Comput., 15, pp. 1035-1061, 2003.
- [3] B. B. Averbeck and D. Lee, “Coding and transmission of information by neural ensembles,” Trends in Neurosci., 27, pp. 225-230, 2004.
- [4] G. Q. Bi and M. M. Poo, “Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type,” J. Neurosci., 18, pp. 10464-10472, 1998.
- [5] C. D. Brody and J. J. Hopfield, “Simple networks for spike-timing-based computation, with application to olfactory processing,” Neuron, 37, pp. 843-852, 2003.
- [6] D. Debanne, B. H. Gahwiler, and S. M. Thompson, “Long-term synaptic plasticity between pairs of individual ca3 pyramidal cells in rat hippocampal slice cultures,” J. Physiol., 507, pp. 237-247, 1998.
- [7] M. Diesmann, M. O. Gewaltig, and A. Aertsen, “Stable propagation of synchronous spiking in cortical neural networks,” Nature, 402, pp. 529-533, 1999.
- [8] A. K. Engel, P. Fries, and W. Singer, “Dynamic predictions: oscillations and synchrony in top-down processing,” Nat. Rev. Neurosci., 2, pp. 704-716, 2001.
- [9] G. B. Ermentrout and D. Kleinfeld, “Traveling electrical waves in cortex: insights from phase dynamics and speculation on a computational role,” Neuron, 29, pp. 33-44, 2001.
- [10] P. Fries, L. H. Reynolds, A. E. Rorie, and R. Desimone, “Modulation of oscillatory neuronal synchronization by selective visual attention,” Science, 291, pp. 1560-1563, 2001.
- [11] C. M. Gray, P. Konig, A. K. Engel, and W. Singer, “Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties,” Nature, 338, pp. 334-337, 1989.
- [12] D. O. Hebb, “The organization of behavior : A neuropsychological theory,” Wiley, New York, 1949.
- [13] J. J. Hopfield, “Neural networks and physical systems with emergent collective computational abilities,” Proc. Natl. Acad. Sci. USA, 79, pp. 2554-2558, 1982.
- [14] D. Lee, “Coherent oscillations in neuronal activity of the supplementary motor area during a visuomotor task,” J. Neurosci., 23, pp. 6798-6809, 2003.
- [15] H. Markram, J. Lubke, M. Frotscher, and B. Sakmann, “Regulation of synaptic efficacy by coincidence of postsynaptic aps and epsps,” Science, 275, pp. 213-215, 1997.
- [16] H. Mushiake, N. Saito, K. Sakamoto, Y. Itoyama, and J. Tanji, “Activity in the lateral prefrontal cortex reflects multiple steps of future events in action plans,” Neuron, 50(4), pp. 631-641, 2006.
- [17] M. Nomura, T. Fukai, and T. Aoyagi, “Synchrony of fast-spiking interneurons interconnected by gabaergic and electrical synapses,” Neural Comput., 15(9), pp. 2179-2198, 2003.
- [18] W. H. Press, W. T. Vetterling, S. A. Teukolsky, and B. P. Flannery, “Numerical recipes in c++: the art of scientific computing,” 2002.
- [19] A. Riehle, S. Grun, M. Diesmann, and A. Aertsen, “Spike synchronization and rate modulation differentially involved in motor cortical function,” Science, 278, pp. 1950-1953, 1997.
- [20] J. Rubin, D. D. Lee, and H. Sompolinsky, “Equilibrium properties of temporally asymmetric hebbian plasticity,” Phys. Rev. Lett., 86, pp. 364-367, 2001.
- [21] K. Sakamoto, H.Mushiake, N. Saito, and J. Tanji, “Functional rules of neuronal synchrony and firing rate in the prefrontal cortex,” Technical Report of IEICE, 8, p. 105, 2005.
- [22] E. Salinas and T. J. Sejnowski, “Correlated neuronal activity and the flow of neural information,” Nat. Rev. Neurosci., 2, pp. 539-550, 2001.
- [23] M. N. Shadlen and J. A. Movshon, “Synchrony unbound: a critical evaluation of the temporal binding hypothesis,” Neuron, 24, pp. 67-77, 1999.
- [24] S. Song, K. D. Miller, and L. F. Abbott, “Competitive hebbian learning through spike-timing-dependent synaptic plasticity,” Nat. Neurosci., 3, pp. 919-926, 2000.
- [25] Y. Yoshimura and E. M. Callaway, “Fine-scale specificity of cortical networks depends on inhibitory cell type and connectivity,” Nat. Neurosci., 8(11), pp. 1552-1559, 2005.
- [26] Y. Yoshimura, J. L. M. Dantzker, and E. M. Callaway, “Excitatory cortical neurons form fine-scale functional networks,” Nature, 433(7028), pp. 868-873, 2005.
- [27] L. I. Zhang, H. W. Tao, C. E. Holt, W. A. Harris, and M. Poo, “A critical window for cooperation and competition among developing retinotectal synapses,” Nature, 395, pp. 37-44, 1998.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.
Copyright© 2007 by Fuji Technology Press Ltd. and Japan Society of Mechanical Engineers. All right reserved.