Paper:
Stochastic-Computational Approach to Self-Similarity Detection in Random Image Fields
Kohji Kamejima
Faculty of Engineering, Osaka Institute of Technology, 5-16-1, Omiya, Asahi, Osaka 535-8585, Japan
We present an integrated stochastic-computational scheme for detecting self-similarity in random image fields. By modeling imaging as a Brownian motion in a successively reduced domain, capture probability is induced on the image plane. Attractor distribution is simultaneously identified with fixed points corresponding to mapping sequences generated by imaging. The computational structure of local maxima of capture probability is extracted through invariance and observability analysis to match observed attractors with a preassigned mapping dictionary. Proposed scheme was implemented as digital algorithm and verified through simulation.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.
Copyright© 1999 by Fuji Technology Press Ltd. and Japan Society of Mechanical Engineers. All right reserved.