Paper:
Data Model of the Strategic Action Planning and Scheduling Problem in a Disaster Response Team
Reza Nourjou*1, Pedro Szekely*2, Michinori Hatayama*1,
Mohsen Ghafory-Ashtiany*3, and Stephen F. Smith*4
*1Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
*2Information Sciences Institute, University of Southern California, USA
*3International Institute of Earthquake Engineering and Seismology, Iran
*4The Robotics Institute, Carnegie Mellon University, USA
- [1] F. Fiedrich, F. Gehbauer, and U. Rickers, “Optimized resource allocation for emergency response after earthquake disasters,” Safety Science, Vol.35, No.1, pp. 41-57, 2000.
- [2] R. Chen, R. Sharman, H. R. Rao, and S. J. Upadhyaya, “Coordination in emergency response management,” Communications of the ACM, Vol.51, No.5, pp. 66-73, 2008.
- [3] R. Chen, R. Sharman, H. Raghav Rao, and Shambhu Upadhyaya, “Design principles of coordinated multi-incident emergency response systems,” In Intelligence and Security Informatics, pp. 81-98, Springer Berlin Heidelberg, 2005.
- [4] T. W. Malone and K. Crowston, “The interdisciplinary study of coordination,” ACM Computing Surveys (CSUR), Vol.26, No.1, pp. 87-119, 1994.
- [5] S. Jain and C. McLean, “Simulation for emergency response: a framework for modeling and simulation for emergency response,” In Proceedings of the 35th conference onWinter simulation: driving innovation, pp. 1068-1076. Winter Simulation Conference, 2003.
- [6] K. M. Khalil, M. Abdel-Aziz, T. T. Nazmy, and A.-B. M. Salem, “Multi-agent crisis response systems-design requirements and analysis of current systems,” arXiv preprint arXiv:0903.2543, 2009.
- [7] H. S. Nwana, L. C. Lee, and N. R. Jennings, “Coordination in software agent systems,” British Telecom Technical Journal, Vol.14, No.4, pp. 79-88, 1996.
- [8] J. D. Hunger and T. L. Wheelen, “Essentials of strategic management,” New Jersey: Prentice Hall, 2003.
- [9] D. A. Buck, J. E. Trainor, and B. E. Aguirre, “A critical evaluation of the incident command system and NIMS,” Journal of Homeland Security and Emergency Management, Vol.3, No.3, 2006.
- [10] G. A. Bigley and K. H. Roberts, “The incident command system: High-reliability organizing for complex and volatile task environments,” Academy of Management Journal, Vol.44, No.6, pp. 1281-1299, 2001.
- [11] FEMA, “Fema Incident Action Planning Guide,”
http://www.uscg.mil/hq/cg5/cg534/nsarc/FEMA%20Incident%20Action%20Planning%20Guide%20(IAP).pdf [accessed April, 2013] - [12] A. R. Vafaeinezhad, A. A. Alesheikh, M. Hamrah, R. Nourjou, and R. Shad, “Using GIS to Develop an Efficient Spatio-temporal Task Allocation Algorithm to Human Groups in an Entirely Dynamic Environment Case Study: Earthquake Rescue Teams,” In Computational Science and Its Applications ICCSA 2009, pp. 66-78. Springer Berlin Heidelberg, 2009.
- [13] R. Nourjou, M. Hatayama, and H. Tatano, “Introduction to spatially distributed intelligent assistant agents for coordination of humanagent teams’ actions,” In Safety, Security, and Rescue Robotics (SSRR), 2011 IEEE International Symposium on, pp. 251-258, IEEE, 2011.
- [14] S. Fuhrmann, A. MacEachren, and G. Cai, “Geoinformation technologies to support collaborative emergency management,” In Digital Government, pp. 395-420. Springer US, 2008.
- [15] H. Kitano and S. Tadokoro, “Robocup rescue: A grand challenge for multiagent and intelligent systems,” AI Magazine, Vol.22, No.1, p. 39, 2001.
- [16] Decker, Keith S., and Victor R. Lesser, “Quantitative modeling of complex environments,” International Journal of Intelligent Systems in Accounting, Finance, and Management, Vol.2, No.4, pp. 215-234, 1993.
- [17] M. Boddy, B. Horling, J. Phelps, R. P. Goldman, R. Vincent, A. C. Long, B. Kohout, and R. Maheswaran, “C TAEMS Language Specification, Version 2.02,” DARPA, Arlington, VA, 2006.
- [18] N. Schurr, J. Marecki, J. P. Lewis, M. Tambe, and P. Scerri, “The defacto system: Training tool for incident commanders,” In AAAI, pp. 1555-1562. 2005.
- [19] R. T. Maheswaran, P. Szekely, and R. Sanchez, “Automated adaptation of strategic guidance in multiagent coordination,” In Agents in Principle, Agents in Practice, pp. 247-262. Springer Berlin Heidelberg, 2011.
- [20] N. Jennings, S. D. Ramchurn, M. Allen-Williams, R. Dash, P. Dutta, A. Rogers, and I. Vetsikas, “The ALADDIN project: Agent technology to the rescue,” In Proceedings of the First Intl. Workshop on Agent Technology for Disaster Management. 2006.
- [21] R. T. Maheswaran, C. M. Rogers, R. Sanchez, and P. Szekely, “Human-agent collaborative optimization of real-time distributed dynamic multi-agent coordination,” In Workshop 25: Optimisation in Multi-agent Systems, p. 49. 2010.
- [22] M. H. Burstein and D, V.McDermott, “Issues in the development of human-computer mixed-initiative planning,” Advances in Psychology, Vol.113, pp. 285-303, 1996.
- [23] R. Johnson, “GIS technology for disasters and emergency management,” An ESRI White Paper, 2000.
- [24] D. L. Moody, “Measuring the quality of data models: an empirical evaluation of the use of quality metrics in practice,” In ECIS, pp. 1337-1352. 2003.
- [25] S. F. Smith, A. Gallagher, T. Zimmerman, L. Barbulescu, and Z. Rubinstein, “Distributed Management of Flexible Times Schedules,” Proceedings 6th International Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS 07), Honolulu Hawaii, May 2007.
- [26] R. T. Maheswaran, P. Szekely, M. Becker, S. Fitzpatrick, G. Gati, J. Jin, R. Neches et al., “Predictability & criticality metrics for coordination in complex environments,” In Proceedings of the 7th international joint conference on Autonomous agents and multiagent systems, Vol.2, pp. 647-654. International Foundation for Autonomous Agents and Multiagent Systems, 2008.
- [27] OCHA, INSARAG Guidelines and Methodology Manual,
http://www.usar.nl/upload/docs/insarag_guidelines_july_2006.pdf [accessed April, 2013] - [28] M. J. Egenhofer and R. D. Franzosa, “Point-set topological spatial relations,” International Journal of Geographical Information System, Vol.5, No.2, pp. 161-174, 1991.
- [29] R. Nourjou, M. Hatayama, S. F. Smith, A. Sadeghi, and P. Szekely, “Design of a GIS-based Assistant Software Agent for the Incident Commander to Coordinate Emergency Response Operations,” arXiv preprint arXiv:1401.0282, 2014.
- [30] R. Nourjou, S. F. Smith, M. Hatayama, N. Okada, and P. Szekely, “Dynamic Assignment of Geospatial-Temporal Macro Tasks to Agents under Human Strategic Decisions for Centralized Scheduling in Multi-agent Systems,” International Journal of Machine Learning and Computing (IJMLC), Vol.4, No.1, pp. 39-46, 2014.
- [31] Y.-K. Kwok and I. Ahmad, “Benchmarking and comparison of the task graph scheduling algorithms,” Journal of Parallel and Distributed Computing, Vol.59, No.3, pp. 381-422, 1999.
- [32] R. Nourjou, S. F. Smith, M. Hatayama, and P. Szekely, “Intelligent Algorithm for Assignment of Agents to Human Strategy in Centralized Multi-agent Coordination,” Journal of Software, 2014.
- [33] R. Nourjou and M. Hatayama, “Simulation of an Organization of Spatial Intelligent Agents in the Visual C#.NET Framework.,” International Journal of Computer Theory and Engineering (IJCTE), Vol.6, No.5, pp. 426-431, 2014.
- [34] B. Mansouri, K. A. Hosseini, and R. Nourjou, “Seismic human loss estimation in Tehran using GIS,” In 14th World Conference on Earthquake Engineering, Beijing, 2008.
- [35] B. Mansouri, M. Ghafory-Ashtiany, K. Amini-Hosseini, R. Nourjou, and M. Mousavi, “Building seismic loss model for Tehran,” Earthquake Spectra, Vol.26, No.1, pp. 153-168, 2010.
- [36] I. Nakabayashi, “Disaster Management System forWide-Area Support,” Journal of Disaster Research, Vol.1, pp. 46-71.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.