single-jc.php

JACIII Vol.27 No.2 pp. 235-242
doi: 10.20965/jaciii.2023.p0235
(2023)

Review:

Modeling and Control Strategies for Liquid Crystal Elastomer-Based Soft Robot Actuator

Jundong Wu*1,*2,*3 ORCID Icon, Yawu Wang*1,*2,*3 ORCID Icon, Wenjun Ye*4 ORCID Icon, Jinhua She*5 ORCID Icon, and Chun-Yi Su*4,† ORCID Icon

*1School of Automation, China University of Geosciences
388 Lumo Road, Hongshan District, Wuhan 430074, China

*2Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems
Wuhan , China

*3Engineering Research Center of Intelligent Technology for Geo-Exploration, Ministry of Education
Wuhan , China

*4Gina Cody School of Engineering and Computer Science, Concordia University
1455 De Maisonneuve Blvd. W. Montreal, Quebec H 1, Canada

Corresponding author

*5School of Engineering, Tokyo University of Technology
1404-1 Katakuramachi, Hachioji, Tokyo 192-0982, Japan

Received:
November 12, 2022
Accepted:
November 28, 2022
Published:
March 20, 2023
Keywords:
liquid crystal elastomer, soft robot actuator, modeling, control, hysteresis
Abstract

Liquid crystal elastomer is a type of soft material with unique physical and chemical properties that offer a variety of possibilities in the growing field of soft robot actuators. This type of material is able to exhibit large, revertible deformation under various external stimuli, including heat, electric or magnetic fields, light, etc., which may lead to a wide range of different applications such as bio-sensors, artificial muscles, optical devices, solar cell plants, etc. With these possibilities, it is important to establish modeling and control strategies for liquid crystal elastomer-based actuators, to obtain the accurate prediction and description of its physical dynamics. However, so far, existing studies on this type of the actuators mainly focus on material properties and fabrication, the state of art on the modeling and control of such actuators is still preliminary. To gain a better understanding on current studies of the topic from the control perspective, this review provides a brief collection on recent studies on the modeling and control of the liquid crystal elastomer-based soft robot actuator. The review will introduce the deformation mechanism of the actuator, as well as basic concepts. Existing studies on the modeling and control for the liquid crystal elastomer-based actuator will be organized and introduced to provide an overview in this field as well as future insights.

Cite this article as:
J. Wu, Y. Wang, W. Ye, J. She, and C. Su, “Modeling and Control Strategies for Liquid Crystal Elastomer-Based Soft Robot Actuator,” J. Adv. Comput. Intell. Intell. Inform., Vol.27 No.2, pp. 235-242, 2023.
Data files:
References
  1. [1] C. Majidi, “Soft robotics: a perspective current trends and prospects for the future,” Soft Robotics, Vol.1, No.1, pp. 5-11, 2014. https://doi.org/10.1089/soro.2013.0001
  2. [2] C. Lee, M. Kim, Y. J. Kim, N. Hong, S. Ryu, H. J. Kim, and S. Kim, “Soft robot review,” Int. J. of Control, Automation and Systems, Vol.15, No.1, pp. 3-15, 2017. https://doi.org/10.1007/s12555-016-0462-3
  3. [3] H. Wang, M. Totaro, and L. Beccai, “Toward perceptive soft robots: Progress and challenges,” Advanced Science, Vol.5, No.9, Article No.1800541, 2018. https://doi.org/10.1002/advs.201800541
  4. [4] D. Trivedi, C. D. Rahn, W. M. Kier, and I. D. Walker, “Soft robotics: Biological inspiration, state of the art, and future research,” Applied Bionics and Biomechanics, Vol.5, Article No.520417, 2008. https://doi.org/10.1080/11762320802557865
  5. [5] D. Rus and M. T. Tolley, “Design, fabrication and control of soft robots,” Nature, Vol.521, No.7553, pp. 467-475, 2015. https://doi.org/10.1038/nature14543
  6. [6] P. Ohta, L. Valle, J. King, K. Low, J. Yi, C. G. Atkeson, and Y.-L. Park, “Design of a lightweight soft robotic arm using pneumatic artificial muscles and inflatable sleeves,” Soft Robotics, Vol.5, No.2, pp. 204-215, 2018. https://doi.org/10.1089/soro.2017.0044
  7. [7] M. Wehner, R. L. Truby, D. J. Fitzgerald, B. Mosadegh, G. M. Whitesides, J. A. Lewis, and R. J. Wood, “An integrated design and fabrication strategy for entirely soft, autonomous robots,” Nature, Vol.536, No.7617, pp. 451-455, 2016. https://doi.org/10.1038/nature19100
  8. [8] W.-B. Li, W.-M. Zhang, H.-X. Zou, Z.-K. Peng, and G. Meng, “A fast rolling soft robot driven by dielectric elastomer,” IEEE/ASME Trans. on Mechatronics, Vol.23, No.4, pp. 1630-1640, 2018. https://doi.org/10.1109/TMECH.2018.2840688
  9. [9] Y. Kim, H. Yuk, R. Zhao, S. A. Chester, and X. Zhao, “Printing ferromagnetic domains for untethered fast-transforming soft materials,” Nature, Vol.558, No.7709, pp. 274-279, 2018. https://doi.org/10.1038/s41586-018-0185-0
  10. [10] M. Sfakiotakis, A. Kazakidi, and D. Tsakiris, “Octopus-inspired multi-arm robotic swimming,” Bioinspiration & Biomimetics, Vol.10, No.3, Article No.035005, 2015. https://doi.org/10.1088/1748-3190/10/3/035005
  11. [11] C. Laschi and M. Cianchetti, “Soft robotics: New perspectives for robot bodyware and control,” Frontiers in Bioengineering and Biotechnology, Vol.2, Article No.3, 2014. https://doi.org/10.3389/fbioe.2014.00003
  12. [12] M. Bengisu and M. Ferrara, “Materials that move: Smart materials, intelligent design,” Springer, 2018. https://doi.org/10.1007/978-3-319-76889-2
  13. [13] N. Bira, P. Dhagat, and J. R. Davidson, “A review of magnetic elastomers and their role in soft robotics,” Frontiers in Robotics and AI, Vol.7, Article No.588391, 2020. https://doi.org/10.3389/frobt.2020.588391
  14. [14] U. Gupta, L. Qin, Y. Wang, H. Godaba, and J. Zhu, “Soft robots based on dielectric elastomer actuators: A review,” Smart Materials and Structures, Vol.28, No.10, Article No.103002, 2019. https://doi.org/10.1088/1361-665X/ab3a77
  15. [15] Y. Zhang, Z. Wang, Y. Yang, Q. Chen, X. Qian, Y. Wu, H. Liang, Y. Xu, Y. Wei, and Y. Ji, “Seamless multimaterial 3D liquid-crystalline elastomer actuators for next-generation entirely soft robots,” Science Advances, Vol.6, No.9, Article No.eaay8606, 2020. https://doi.org/10.1126/sciadv.aay8606
  16. [16] Y. Chen, H. Zhao, J. Mao, P. Chirarattananon, E. F. Helbling, N.-s. P. Hyun, D. R. Clarke, and R. J. Wood, “Controlled flight of a microrobot powered by soft artificial muscles,” Nature, Vol.575, No.7782, pp. 324-329, 2019. https://doi.org/10.1038/s41586-019-1737-7
  17. [17] M. Camacho-Lopez, H. Finkelmann, P. Palffy-Muhoray, and M. Shelley, “Fast liquid-crystal elastomer swims into the dark,” Nature Materials, Vol.3, No.5, pp. 307-310, 2004. https://doi.org/10.1038/nmat1118
  18. [18] Q. He, Z. Wang, Y. Wang, A. Minori, M. T. Tolley, and S. Cai, “Electrically controlled liquid crystal elastomer–based soft tubular actuator with multimodal actuation,” Science Advances, Vol.5, No.10, Article No.eaax5746, 2019. https://doi.org/10.1126/sciadv.aax5746
  19. [19] M. Warner and E. M. Terentjev, “Liquid crystal elastomers,” Oxford University Press, 2007.
  20. [20] C. Ohm, M. Brehmer, and R. Zentel, “Liquid crystalline elastomers as actuators and sensors,” Advanced Materials, Vol.22, No.31, pp. 3366-3387, 2010. https://doi.org/10.1002/adma.200904059
  21. [21] Y. Wang, J. Liu, and S. Yang, “Multi-functional liquid crystal elastomer composites,” Applied Physics Reviews, Vol.9, No.1, Article No.011301, 2022. https://doi.org/10.1063/5.0075471
  22. [22] H. Zeng, O. M. Wani, P. Wasylczyk, R. Kaczmarek, and A. Priimagi, “Self-regulating iris based on light-actuated liquid crystal elastomer,” Advanced Materials, Vol.29, No.30, Article No.1701814, 2017. https://doi.org/10.1002/adma.201701814
  23. [23] M. Wang, X.-B. Hu, B. Zuo, S. Huang, X.-M. Chen, and H. Yang, “Liquid crystal elastomer actuator with serpentine locomotion,” Chemical Communications, Vol.56, No.55, pp. 7597-7600, 2020. https://doi.org/10.1039/D0CC02823A
  24. [24] Y. Yan, Y. Zhao, Y. Alsaid, B. Yao, Y. Zhang, S. Wu, and X. He, “Artificial Phototropic Systems for Enhanced Light Harvesting Based on a Liquid Crystal Elastomer,” Advanced Intelligent Systems, Vol.3, No.10, Article No.2170070, 2021. https://doi.org/10.1002/aisy.202170070
  25. [25] F. Ge, R. Yang, X. Tong, F. Camerel, and Y. Zhao, “A multifunctional dye-doped liquid crystal polymer actuator: Light-guided transportation, turning in locomotion, and autonomous motion,” Angewandte Chemie Int. Edition, Vol.57, No.36, pp. 11758-11763, 2018. https://doi.org/10.1002/anie.201807495
  26. [26] Y. Li, Y. Liu, and D. Luo, “Polarization dependent light-driven liquid crystal elastomer actuators based on photothermal effect,” Advanced Optical Materials, Vol.9, No.5, Article No.2001861, 2020. https://doi.org/10.1002/adom.202001861
  27. [27] Y. Geng, R. Kizhakidathazhath, and J. P. Lagerwall, “Robust cholesteric liquid crystal elastomer fibres for mechanochromic textiles,” Nature Materials, Vol.21, pp. 1441-1447, 2022. https://doi.org/10.1038/s41563-022-01355-6
  28. [28] L. Ceamanos, Z. Kahveci, M. López-Valdeolivas, D. Liu, D. J. Broer, and C. Sánchez-Somolinos, “Four-dimensional printed liquid crystalline elastomer actuators with fast photoinduced mechanical response toward light-driven robotic functions,” ACS Applied Materials & Interfaces, Vol.12, No.39, pp. 44195-44204, 2020. https://doi.org/10.1021/acsami.0c13341
  29. [29] T. A. Kent, M. J. Ford, E. J. Markvicka, and C. Majidi, “Soft actuators using liquid crystal elastomers with encapsulated liquid metal joule heaters,” Multifunctional Materials, Vol.3, No.2, Article No.025003, 2020. https://doi.org/10.1088/2399-7532/ab835c
  30. [30] W. Zhang, Y. Nan, Z. Wu, Y. Shen, and D. Luo, “Photothermal-Driven Liquid Crystal Elastomers: Materials, Alignment and Applications,” Molecules, Vol.27, No.14, Article No.4330, 2022. https://doi.org/10.3390/molecules27144330
  31. [31] M. Hussain, E. I. L. Jull, R. J. Mandle, T. Raistrick, P. J. Hine, and H. F. Gleeson, “Liquid crystal elastomers for biological applications,” Nanomaterials, Vol.11, No.3, Article No.813, 2021. https://doi.org/10.3390/nano11030813
  32. [32] S. Krause, F. Zander, G. Bergmann, H. Brandt, H. Wertmer, and H. Finkelmann, “Nematic main-chain elastomers: Coupling and orientational behavior,” Comptes Rendus Chimie, Vol.12, Nos.1-2, pp. 85-104, 2009. https://doi.org/10.1016/j.crci.2008.08.003
  33. [33] H. Liu, H. Tian, X. Li, X. Chen, K. Zhang, H. Shi, C. Wang, and J. Shao, “Shape-programmable, deformation-locking, and self-sensing artificial muscle based on liquid crystal elastomer and low–melting point alloy,” Science Advances, Vol.8, No.20, Article No.eabn5722, 2022. https://doi.org/10.1126/sciadv.abn5722
  34. [34] A. Kotikian, J. M. Morales, A. Lu, J. Mueller, Z. S. Davidson, J. W. Boley, and J. A. Lewis, “Innervated, Self-Sensing Liquid Crystal Elastomer Actuators with Closed Loop Control,” Advanced Materials, Vol.33, No.27, Article No.2101814, 2021. https://doi.org/10.1002/adma.202101814
  35. [35] J. Wu, W. Ye, Y. Wang, and C.-Y. Su, “Modeling of photo-responsive liquid crystal elastomer actuators,” Information Sciences, Vol.560, pp. 441-455, 2021. https://doi.org/10.1016/j.ins.2021.01.009
  36. [36] J. Naciri, A. Srinivasan, H. Jeon, N. Nikolov, P. Keller, and B. R. Ratna, “Nematic elastomer fiber actuator,” Macromolecules, Vol.36, No.22, pp. 8499-8505, 2003. https://doi.org/10.1021/ma034921g
  37. [37] A. Konya, V. Gimenez-Pinto, and R. L. Selinger, “Modeling defects, shape evolution, and programmed auto-origami in liquid crystal elastomers,” Frontiers in Materials, Vol.3, Article No.24, 2016. https://doi.org/10.3389/fmats.2016.00024
  38. [38] M. Groß, J. Dietzsch, and F. Concas, “A new mixed finite element formulation for reorientation in liquid crystalline elastomers,” European J. of Mechanics-A/Solids, Vol.97, Article No.104828, 2023. https://doi.org/10.1016/j.euromechsol.2022.104828
  39. [39] G. Skacej and C. Zannoni, “Molecular simulations shed light on supersoft elasticity in polydomain liquid crystal elastomers,” Macromolecules, Vol.47, No.24, pp. 8824-8832, 2014. https://doi.org/10.1021/ma501836j
  40. [40] V. I. Egorov, O. G. Maksimova, M. Okumura, S. Noro, and H. Koibuchi, “Modeling shape and volume transitions in liquid crystal elastomers,” J. of Physics: Conf. Series, Vol.1730, Article No.012038, 2021. https://doi.org/10.1088/1742-6596/1730/1/012038
  41. [41] P. Prathumrat, I. Sbarski, E. Hajizadeh, and M. Nikzad, “A comparative study of force fields for predicting shape memory properties of liquid crystalline elastomers using molecular dynamic simulations,” J. of Applied Physics, Vol.129, No.15, Article No.155101, 2021. https://doi.org/10.1063/5.0044197
  42. [42] H. Kim and J. Choi, “Interfacial and mechanical properties of liquid crystalline elastomer nanocomposites with grafted Au nanoparticles: A molecular dynamics study,” Polymer, Vol.218, Article No.123525, 2021. https://doi.org/10.1016/j.polymer.2021.123525
  43. [43] M. Soltani, K. Raahemifar, A. Nokhosteen, F. M. Kashkooli, and E. L. Zoudani, “Numerical methods in studies of liquid crystal elastomers,” Polymers, Vol.13, No.10, Article No.1650, 2021. https://doi.org/10.3390/polym13101650
  44. [44] Y. Jiang, L. Jin, and Y. Huo, “Unusual stress and strain concentration behaviors at the circular hole of a large monodomain liquid crystal elastomer sheet,” J. of the Mechanics and Physics of Solids, Vol.156, Article No.104615, 2021. https://doi.org/10.1016/j.jmps.2021.104615
  45. [45] L. A. Mihai, D. Mistry, T. Raistrick, H. F. Gleeson, and A. Goriely, “A mathematical model for the auxetic response of liquid crystal elastomers,” Philosophical Trans. of the Royal Society A, Vol.380, No.2234, Article No.20210326, 2022. https://doi.org/10.1098/rsta.2021.0326
  46. [46] W. Zhu, M. Shelley, and P. Palffy-Muhoray, “Modeling and simulation of liquid-crystal elastomers,” Physical Review E, Vol.83, No.5, Article No.051703, 2011. https://doi.org/10.1103/PhysRevE.83.051703
  47. [47] G. L. Kusters, I. P. Verheul, N. B. Tito, P. v. d. Schoot, and C. Storm, “Dynamical Landau–de Gennes theory for electrically-responsive liquid crystal networks,” Physical Review E, Vol.102, No.4, Article No.042703, 2020. https://doi.org/10.1103/PhysRevE.102.042703
  48. [48] Y. Zhang, C. Xuan, Y. Jiang, and Y. Huo, “Continuum mechanical modeling of liquid crystal elastomers as dissipative ordered solids,” J. of the Mechanics and Physics of Solids, Vol.126, pp. 285-303, 2019. https://doi.org/10.1016/j.jmps.2019.02.018
  49. [49] Y. Xu and Y. Huo, “Continuum modeling of the nonlinear electro-opto-mechanical coupling and solid Fréedericksz transition in dielectric liquid crystal elastomers,” Int. J. of Solids and Structures, Vols.219-220, pp. 198-212, 2021. https://doi.org/10.1016/j.ijsolstr.2021.03.003
  50. [50] J. Wu, W. Ye, Y. Wang, and C.-Y. Su, “Modeling Based on a Two-Step Parameter Identification Strategy for Liquid Crystal Elastomer Actuator Considering Dynamic Phase Transition Process,” IEEE Trans. on Cybernetics, 2022. https://doi.org/10.1109/TCYB.2022.3179433
  51. [51] J. Wu, Y. Wang, W. Ye, and C.-Y. Su, “A Hybrid Model for Photo-Responsive Liquid Crystal Elastomer Actuator,” 2022 13th Asian Control Conf. (ASCC), pp. 1090-1094, 2022. https://doi.org/10.23919/ASCC56756.2022.9828247
  52. [52] G. Wang and G. Chen, “Identification of piezoelectric hysteresis by a novel Duhem model based neural network,” Sensors and Actuators A: Physical, Vol.264, pp. 282-288, 2017. https://doi.org/10.1016/j.sna.2017.07.058
  53. [53] P.-B. Nguyen, S.-B. Choi, and B.-K. Song, “A new approach to hysteresis modelling for a piezoelectric actuator using Preisach model and recursive method with an application to open-loop position tracking control,” Sensors and Actuators A: Physical, Vol.270, pp. 136-152, 2018. https://doi.org/10.1016/j.sna.2017.12.034
  54. [54] A. Dargahi, S. Rakheja, and R. Sedaghati, “Development of a field dependent Prandtl-Ishlinskii model for magnetorheological elastomers,” Materials & Design, Vol.166, Article No.107608, 2019. https://doi.org/10.1016/j.matdes.2019.107608
  55. [55] M. Rogóż, H. Zeng, C. Xuan, D. S. Wiersma, and P. Wasylczyk, “Light-driven soft robot mimics caterpillar locomotion in natural scale,” Advanced Optical Materials, Vol.4, No.11, pp. 1689-1694, 2016. https://doi.org/10.1002/adom.201600503
  56. [56] X. Lu, H. Zhang, G. Fei, B. Yu, X. Tong, H. Xia, and Y. Zhao, “Liquid-crystalline dynamic networks doped with gold nanorods showing enhanced photocontrol of actuation,” Advanced Materials, Vol.30, No.14, Article No.1706597, 2018. https://doi.org/10.1002/adma.201706597
  57. [57] O. M. Wani, H. Zeng, and A. Priimagi, “A light-driven artificial flytrap,” Nature Communications, Vol.8, No.1, Article No.15546, 2017. https://doi.org/10.1038/ncomms15546
  58. [58] C. Ahn, X. Liang, and S. Cai, “Bioinspired design of light-powered crawling, squeezing, and jumping untethered soft robot,” Advanced Materials Technologies, Vol.4, No.7, Article No.1900185, 2019. https://doi.org/10.1002/admt.201900185
  59. [59] Y. Zhang and P. Yan, “An adaptive integral sliding mode control approach for piezoelectric nano-manipulation with optimal transient performance,” Mechatronics, Vol.52, pp. 119-126, 2018. https://doi.org/10.1016/j.mechatronics.2018.05.004
  60. [60] M. C. d. Jong, K. C. Kosaraju, and J. M. A. Scherpen, “On control of voltage-actuated piezoelectric beam: A Krasovskii passivity-based approach,” European J. of Control, Vol.69, Article No.100724, 2023. https://doi.org/10.1016/j.ejcon.2022.100724
  61. [61] X. Zhang, Y. Wang, C. Wang, C.-Y. Su, Z. Li, and X. Chen, “Adaptive estimated inverse output-feedback quantized control for piezoelectric positioning stage,” IEEE Trans. on Cybernetics, Vol.49, No.6, pp. 2106-2118, 2018. https://doi.org/10.1109/TCYB.2018.2826519
  62. [62] K. Kuhnen, “Modelling, identification, and compensation of complex hysteretic and log(t)-type creep nonlinearities,” Control and Intelligent Systems, Vol.33, No.2, pp. 134-147, 2005. http://doi.org/10.2316/Journal.201.2005.2.201-1420
  63. [63] Z. Li, C.-Y. Su, and T. Chai, “Compensation of hysteresis nonlinearity in magnetostrictive actuators with inverse multiplicative structure for Preisach model,” IEEE Trans. on Automation Science and Engineering, Vol.11, No.2, pp. 613-619, 2013. https://doi.org/10.1109/TASE.2013.2284437
  64. [64] Z. Li, J. Shan, and U. Gabbert, “A direct inverse model for hysteresis compensation,” IEEE Trans. on Industrial Electronics, Vol.68, No.5, pp. 4173-4181, 2021. https://doi.org/10.1109/TIE.2020.2984452
  65. [65] P. Huang, J. Wu, P. Zhang, Y. Wang, and C.-Y. Su, “Dynamic modeling and tracking control for dielectric elastomer actuator with a model predictive controller,” IEEE Trans. on Industrial Electronics, Vol.69, No.2, pp. 1819-1828, 2022. https://doi.org/10.1109/TIE.2021.3063976
  66. [66] G. Yan, “Inverse neural networks modelling of a piezoelectric stage with dominant variable,” J. of the Brazilian Society of Mechanical Sciences and Engineering, Vol.43, No.8, Article No.387, 2021. https://doi.org/10.1007/s40430-021-03102-5
  67. [67] J. Wu, Y. Wang, W. Ye, and C.-Y. Su, “Positioning control of liquid crystal elastomer actuator based on double closed-loop system structure,” Control Engineering Practice, Vol.123, Article No.105136, 2022. https://doi.org/10.1016/j.conengprac.2022.105136

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Apr. 22, 2024