Paper:
Topic Evolution Analysis Based on Cluster Topic Model
Yaoyi Xi, Gang Chen, Bicheng Li, and Yongwang Tang
Zhengzhou Information Science and Technology Institute
Zhengzhou 450001, China
- [1] W. Cui, S. Liu, L. Tan et al., “Textflow: Towards better understanding of evolving topics in text,” IEEE Trans. on Visualization and Computer Graphics, Vol.17, No.12, pp. 2412-2421, 2011.
- [2] J. H. Lau, N. Collier, and T. Baldwin, “On-line Trend Analysis with Topic Models: #Twitter Trends Detection Topic Model Online,” Proc. of the 24th Int. Conf. on Computational Linguistics, pp. 1519-1534, 2012.
- [3] P. Lee, L. V. S. Lakshmanan, and E. E. Milios, “Event Evolution Tracking from Streaming Social Posts,” arXiv:1311.5978v1, 2013.
- [4] J. Allan, “Topic Detection and Tracking: Event-based information Organization,” Kluwer Academic Publisher, 2002.
- [5] W. Ding and C. Chen, “Dynamic topic detection and tracking: A comparison of HDP, Co-Word, and Co-Citation Methods,” J. of the American Society for Information Science and Technology, pp. 1-14, 2014.
- [6] A. Ahmed, Q. Ho, J. Eisenstein et al., “Unified Analysis of Streaming News,” Proc. of the 20th Int. Conf. on World Wide Web, ACM, pp. 267-276, 2011.
- [7] A. Ahmed, Q. Ho, C. H. Teo et al., “Online inference for the infinite topic-cluster model: Storylines from streaming text,” Int. Conf. on Artificial Intelligence and Statistics, pp. 101-109, 2011.
- [8] Y. Hu, L. Bai, and W. Zhang, “Modeling and Analyzing Topic Evolution,” Acta Automatica Sinica, Vol.38, No.10, pp. 1690-1697, 2012.
- [9] Y. Fang, H. Huang, X. Xin et al., “Topic Evolutionary Analysis for Dynamic Topic Number,” J. of Chinese Information Processing, Vol.28, No.3, pp. 142-149, 2014.
- [10] D. Shahaf and C. Guestrin, “Connecting Two (or Less) Dots: Discovering Structure in News Articles,” ACM Trans. on Knowledge Discovery from Data (TKDD), Vol.5, No.4, pp. 24, 2012.
- [11] D. Shahaf and C. Guestrin, “Connecting the Dots Between News Articles,” Proc. of the 16th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining. ACM, pp. 623-632, 2010.
- [12] X. Tannier and V. Moriceau, “Building Event Threads out of Multiple News Articles,” EMNLP, pp. 958-967, 2013.
- [13] A. Feng and J. Allan, “Finding and Linking Incidents in News,” Proc. of the 16th ACM Conf. on Information and Knowledge Management, pp. 821-829, 2007.
- [14] A. Feng and J. Allan, “Incident Threading for News Passages,” Proc. of the 18th ACM Conf. on Information and Knowledge Management. pp. 1307-1316, 2009.
- [15] R. Nallapati, A. Feng, F. Peng, and J. Allan, “Event threading within news topics,” Proc.13th ACM Int. Conf. Inf. Knowl. Management, pp. 446-453, 2004.
- [16] C. C. Yang, X. Shi, and C. P. Wei, “Discovering Event Evolution Graphs From News Corpora,” IEEE Trans. on Systems, Man, and Cybernetics – Part A: Systems and Humans, Vol.39, No.4, pp. 850-863, 2009.
- [17] D. Luo, J. Yang, M. Krstajic et al., “EventRiver: Visually Exploring Text Collections with Temporal References,” IEEE Trans. on Visualization and Computer Graphics, Vol.18, No.1, pp. 93-105, 2012.
- [18] X. Zhao, C. Yang, B. Li et al., “A Topic Evolution Mining Algorithm of News Text Based on Feature Evolving,” Chinese J. of Computers, Vol.27, No.4, pp. 819-832, 2014.
- [19] D. Blei, A. Ng, and M. Jordan, “Latent dirichlet allocation,” J. of Machine Learning Research, pp. 993-1022, 2003.
- [20] Y. Teh, M. Jordan, M. Beal et al., “Hierarchical Dirichlet processes,” J. of the American Statistical Association, Vol.101, No.476, pp. 1566-1581, 2006.
- [21] Y. Lu, Q. Mei, and C. Zhai, “Investigating task performance of probabilistic topic models: an empirical study of PLSA and LDA,” Information Retrieval, Vol.14, No.2, pp. 178-203, 2011.
- [22] H. M. Wallach, “Structured topic models for language,” University of Cambridge, 2008.
- [23] P. Xie and E. Xing, “Integrating Document Clustering and Topic Modeling,” Proc. of the 29th Conf. Annual Conf. on Uncertainty in Artificial Intelligence (UAI-13), pp. 694-703.
- [24] M. Serizawa and I. Kobayashi, “Topic Tracking Based on Identifying Proper No.of the Latent Topics in Documents,” J. of Advanced Computational Intelligence and Intelligent Informatics, Vol.16, No.5, pp. 611-618, 2012.
- [25] J. Makkonen, “Investigations on Event Evolution in TDT,” Proc. of HLT-NAACL 2003 student research workshop, Edmonton, pp. 43-48, 2003.
- [26] T. Ferguson, “A Bayesian Analysis of Some Nonparametric Problems,” Annals of Statistics, Vol.1, No.2, pp. 209-230, 1973.
- [27] E. Gansner, E. Koutsofios, and S. North, “Drawing graphs with dot,” Technical report, AT&T Research,
http://www.graphviz.org/Documentation/dotguide.pdf, 2006 [Accessed Apr. 20, 2015]
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.