Paper:
Unsupervised Part-Based Scene Modeling for Map Matching
Kanji Tanaka and Shogo Hanada
Graduate School of Engineering, University of Fukui
3-9-1 Bunkyo, Fukui, Fukui 910-8507, Japan
- [1] B. Yamauchi and R. Beer, “Spatial learning for navigation in dynamic environments,” IEEE Trans. Systems, Man, and Cybernetics, Part B, Vol.26, No.3, pp. 496-505, 1996.
- [2] S. Huang, Z. Wang, and G. Dissanayake, “Sparse local submap joining filter for building large-scale maps,” IEEE Trans. Robotics (TRO), Vol.24, No.5, pp. 1121-1130, 2008.
- [3] A. Wendel, M. Maurer, G. Graber, T. Pock, and H. Bischof, “Dense reconstruction on-the-fly,” IEEE Int. Conf. Computer Vision and Pattern Recognition (CVPR), pp. 1450-1457, 2012.
- [4] S. Se, D. G. Lowe, and J. J. Little, “Mobile robot localization and mapping with uncertainty using scale-invariant visual landmarks,” I. J. Robotic Res., Vol.21, No.8, pp. 735-760, 2002.
- [5] M. Cummins and P. Newman, “Highly scalable appearance only slam – fab-map 2.0,” Robotics: Science and Systems, 2009.
- [6] D. Scaramuzza, F. Fraundorfer, and M. Pollefeys, “Closing the loop in appearance-guided omnidirectional visual odometry by using vocabulary trees. Robot. Auton. Syst., Vol.58, No.6, pp. 820-827, 2010.
- [7] M. A. Fischler and R. A. Elschlager, “The representation and matching of pictorial structures,” IEEE Trans. on Computers, Vol.C-22, No.1, pp. 67-92, 1973.
- [8] B. Leibe, A. Leonardis, and B. Schiele, “Combined object categorization and segmentation with an implicit shape model,” Euro. Conf. Compuer Vision (ECCV) Workshop on Statistical Learning in Computer Vision, pp. 17-32, 2004.
- [9] P. Arbelaez, B. Hariharan, C. Gu, S. Gupta, L. D. Bourdev, and J. Malik, “Semantic segmentation using regions and parts,” IEEE Int. Conf. Computer Vision and Pattern Recognition (CVPR), pp. 3378-3385, 2012.
- [10] H.-K. Tan and C.-W. Ngo, “Common pattern discovery using earth mover s distance and local flow maximization,” IEEE Int. Conf. Computer Vision (ICCV), pp. 1222-1229, 2005.
- [11] Y. Jiang, J. Meng, and J. Yuan, “Randomized visual phrases for object search,” IEEE Int. Conf. Computer Vision and Pattern Recognition (CVPR), pp. 3100-3107, 2012.
- [12] Y. Chokushi, K. Tanaka, and M. Ando, “Common landmark discovery in urban scenes,” IAPR Int. Conf. Machine Vision Applications, 2013.
- [13] A. Howard and N. Roy, “The robotics data set repository (radish),” 2003.
- [14] P. F. Felzenszwalb, R. B. Girshick, D. A. McAllester, and D. Ramanan, “Object detection with discriminatively trained partbased models,” IEEE Trans. Pattern Analysis and Machine Intelligence (PAMI), Vol.32, No.9, pp. 1627-1645, 2010.
- [15] T. Tuytelaars, C. H. Lampert, M. B. Blaschko, and W. L. Buntine, “Unsupervised object discovery: A comparison,” Int. J. of Computer Vision, Vol.88, No.2, pp. 284-302, 2010.
- [16] J. Sivic and A. Zisserman, “Video google: A text retrieval approach to object matching in videos,” IEEE Int. Conf. Computer Vision (ICCV), pp. 1470-1477, 2003.
- [17] J. Neira, J. D. Tardos, and J. A. Castellanos, “Linear time vehicle relocation in slam,” Proc. IEEE Int. Conf. Robotics and Automation, Vol.1, pp. 427-433, 2003.
- [18] S. Olufs and M. Vincze, “Robust single view room structure segmentation in manhattan-like environments from stereo vision,” IEEE Int. Conf. Robotics and Automation (ICRA), pp. 5315-5322, 2011.
- [19] A. Eliazar and R. Parr, “Dp-slam: Fast, robust simultaneous localization and mapping without predetermined landmarks,” Proc. 18th Int. Joint Conf. on Artificial Intelligence (IJCAI-03), pp. 1135-1142, Morgan Kaufmann, 2003.
- [20] T. Nagasaka and K. Tanaka, “An incremental scheme for dictionary-based compressive slam,” IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS), pp. 872-879, 2011.
Available at: http://rc.his.u-fukui.ac.jp/ICDCS.pdf. [Accessed October 28, 2014] - [21] M. Ando, K. Tanaka, and Y. Inagaki, “A bag-ofbounding-boxes approach to object-level view image retrieval,” Proc. SICE Annual Conf., 2013.
Available at: http://rc.his.u-fukui.ac.jp/BOBB.pdf. [Accessed October 28, 2014]
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.