Paper:
Semi-Qualitative Trend Analysis for the Monitoring of Process Control Loops
Yoshiyuki Yamashita
Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
- [1] S. Dash, M. R. Maurya, and V. Venkatasubramanian, “A novel interval-halving framework for automated identification of process trends,” AIChEJ., Vol.50, No.1, pp. 149-162, 2004.
- [2] S. Carbonnier C. Garcia-Beltan, C. Cadet, and S. Gentil, “Trends extraction and analysis for complex system monitoring and decision support,” Engineering Applications of Artificial Intelligence, Vol.18, No.1, pp. 21-36, 2005.
- [3] Y. Yamashita, “On-line extraction of qualitative movements for monitoring process plants,” Lecture Note in Artificial Intelligence, Vol.4252, pp. 595-602, 2006.
- [4] Y. Yamashita, “An Automated Method for Detection of Stiction in Process Control Loops,” Control Engineering Practice, Vol.14, No.5, pp. 503-510, 2006.
- [5] J. T. Cheung and G. Stephanopoulous, “Representation of process trends – Part I: A formal representation framework,” Computers and Chemical Engineering, Vol.14, No.4-5, pp. 495-510, 1990.
- [6] B. R. Bakshi and G. Stephanopoulous, “Representation of process trends – Part III: Multi-scale extraction of trends from process data,” Computers and Chemical Engineering, Vol.18, No.4, pp. 267-302, 1994.
- [7] D. B. Ender, “Process control performances. Not as good as you think,” Control Engineering, Vol.40, No.1, pp. 180-190, 1993.
- [8] T. Hägglund, “A friction compensator for pneumatic control valves,” J. of Process Control, Vol.12, No.8, pp. 897-904, 2002.
- [9] R. Srinivasan and R. Rengasawamy, “Approaches for efficient stiction compensation in process control valves,” Computers and Chemical Engineering, Vol.32, No.1-2, pp. 218-229, 2008.
- [10] N. F. Thornhill and T. Hägglund, “Detection and Diagnosis of Oscillation in Control Loops,” Int. J. Adaptive Control and Signal Processing, Vol.17, No.7-9, pp. 625-634, 1997.
- [11] A. Horch, “A Simple Method for Detection of Sluggish Control Loops,” Control Engineering Practice, Vol.7, No.10, pp. 1221-1231, 1999.
- [12] R. Rengaswamy and V. Venkatasubramanian, “A syntactic pattern recognition for process monitoring and fault diagnosis,” Engineering Application of Artificial Intelligence, Vol.8, No.1, pp. 35-51, 1995.
- [13] R. Rengaswamy, T. Hägglund, and V. Venkatsubramanian, “A qualitative shape analysis formalism for monitoring control loop performance,” Engineering Applications of Artificial Intelligence, Vol.14, No.1, pp. 23-33, 2001.
- [14] M. Kano, H. Maruta, H. Kugemoto, and K. Shimizu, “Practical model and detection algorithm for valve stiction,” Proc. IFAC DYCOPS, Cambridge, USA, 2004.
- [15] T. Hägglund, “A shape-analysis approach for diagnosis of stiction in control valves,” Control Engineering Practice, Vol.19, No.8, pp. 782-789, 2011.
- [16] D. Kimura, M. Nii, T. Yamaguchi, Y. Takahashi, and T. Yumoto, “Fuzzy Nonlinear Regression Analysis using Fuzzified Neural Networks for Fault Diagnosis of Chemical Plants,” J. Advanced Computational Intelligence and Intelligent Informatics, Vol.15, No.3, pp. 336-344, 2011.
- [17] N. F. Thornhill and A. Horch, “Advances and new directions in plant-wide disturbance detection and diagnosis,” Control Engineering Practice, Vol.15, No.10, pp. 1196-1206, 2007.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.