Paper:
Evaluating Functional Connectivity in Alcoholics Based on Maximal Weight Matching
Guohun Zhu*,***, Yan Li*,***, and Peng (Paul) Wen**,***
*Department of Mathematics and Computing, University of Southern Queensland
**Faculty of Engineering and Surveying, University of Southern Queensland
***Centre for Systems Biology, University of Southern Queensland, USQ Toowoomba Campus, West Street, Toowoomba, QLD 4350, Australia
- [1] E. A. de Bruin, S. Bijl, et al., “Abnormal EEG synchronization in heavily drinking students,” Clinical Neurophysiology, Vol.115, No.9, pp. 2048-2055, 2004.
- [2] E. P. Hayden, R. E. Wiegand, et al., “Patterns of Regional Brain Activity in Alcohol-Dependent Subjects,” Alcoholism: Clinical and Experimental Research, Vol.30, No.12, pp. 1986-1991, 2006.
- [3] A. Michael et al., “Interhemispheric electroencephalographic coherence as a biological marker in alcoholism,” Acta Psychiatrica Scandinavica, Vol.87, pp. 213-217, 1993.
- [4] G.Winterer et al., “EEG phenotype in alcoholism: increased coherence in the depressive subtype,” Acta Psychiatrica Scandinavica, Vol.108, pp. 51-60, 2003.
- [5] P. E. Keller, G. Knoblich, et al., “Pianists duet better when they play with themselves: On the possible role of action simulation in synchronization,” Consciousness and Cognition, Vol.16, No.1, pp. 102-111, 2007.
- [6] X. L. Zhang, H. Begleiter, et al., “Electrophysiological evidence of memory impairment in alcoholic patients,” Biological Psychiatry, Vol.42, No.12, pp. 1157-1171, 1997.
- [7] V. Sakkalis et al., “Optimal brain network synchrony visualization: Application in an alcoholism paradigm,” in Engineering in Medicine and Biology Society, 2007 (EMBS 2007), 29th Annual Int. Conf. of the IEEE, Lyon, pp. 4285-4288, October 22, 2007.
- [8] P. Salvador, et al., “Markovian Models forMedical Signals onWireless Sensor Networks,” in Communications Workshops, 2009, ICC Workshops 2009, IEEE Int. Conf. on, pp. 1-5, 2009.
- [9] B. Hu, et al., “EEG-Based Cognitive Interfaces for Ubiquitous Applications: Developments and Challenges,” Intelligent Systems, IEEE, Vol.26, pp. 46-53, 2011.
- [10] D. J. Watts, S. H. Strogatz, “Collective dynamics of ‘small-world’ networks,” Nature, Vol.393, pp. 440-442, 1998.
- [11] M. D. Humphries, K. Gurney, et al., “The brainstem reticular formation is a small-world, not scale-free, network,” Proc. of the Royal Society B: Biological Sciences, Vol.273, No.1585, pp. 503-511, 2006.
- [12] S. Micheloyannis, E. Pachou, et al., “Using graph theoretical analysis of multi channel EEG to evaluate the neural efficiency hypothesis,” Neuroscience Letters, Vol.402, No.3, pp. 273-277, 2006.
- [13] R. Palaniappan, P. Raveendran, et al., “VEP optimal channel selection using genetic algorithm for neural network classification of alcoholics,” IEEE Trans. on Neural Networks, Vol.13, No.2, pp. 486-491, 2002.
- [14] M. Rangaswamy, B. Porjesz, et al., “Resting EEG in offspring of male alcoholics: beta frequencies,” Int. J. of Psychophysiology, Vol.51, No.3, pp. 239-251, 2004.
- [15] K. Ravi and R. Palaniappan, “Neural network classification of late gamma band electroencephalogram features,” Soft Computing – A Fusion of Foundations, Methodologies and Applications, Vol.10, No.2, pp. 163-169, 2006.
- [16] J. Theiler, “Spurious dimension from correlation algorithms applied to limited time-series data,” Physical Review A, Vol.34, No.3, pp. 2427-2432, 1986.
- [17] C. J. Stam and B. W. van Dijk, “Synchronization likelihood: an unbiased measure of generalized synchronization in multivariate data sets,” Physica D: Nonlinear Phenomena, Vol.163, No.3, pp. 236-251, 2002.
- [18] E. J. Sanz-Arigita et al., “Loss of ‘Small-World’ Networks in Alzheimer’s Disease: Graph Analysis of fMRI Resting-State Functional Connectivity,” PLoS ONE, Vol.5, p. e13788, 2010.
- [19] F. Takens, “Detecting strange attractors in turbulence Dynamical Systems and Turbulence,” Warwick 1980, D. Rand and L.-S. Young (Eds.), Springer Berlin/Heidelberg, Vol.898, pp. 366-381, 1981.
- [20] H. N. Gabow, “An Efficient Implementation of Edmonds Algorithm for Maximum Matching,” JACM, Vol.23, No.2, pp. 221-234, 1976.
- [21] P. Tichavsky and Z. Koldovsky, “Optimal pairing of signal components separated by blind techniques,” IEEE Signal Processing Letters, Vol.11, No.2, pp. 119-122, 2004.
- [22] A. Dapena, M. F. Bugallo, and L. Castedo, “Separation of convolutive mixtures of temporally-white signals: a novel frequencydomain approach,” In: Proc. Int. Conf. Independent Component Analysis and Blind Source Separation (ICA), San Diego, USA, pp. 315-320, 2001.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.