Paper:
Variable Weighting in PCA-Guided k-Means and its Connection with Information Summarization
Katsuhiro Honda, Akira Notsu, and Hidetomo Ichihashi
Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
- [1] J. B. MacQueen, “Some methods of classification and analysis of multivariate observations,” Proc. of 5th Berkeley Symposium on Math. Stat. and Prob., pp. 281-297, 1967.
- [2] C. Ding and X. He, “K-means clustering via principal component analysis,” Proc. of Int. Conf. Machine Learning (ICML 2004), pp. 225-232, 2004.
- [3] J. Z. Huang, M. K. Ng, H. Rong, and Z. Li, “Automated variable weighting in k-means type clustering,” IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol.27, No.5, pp. 657-668, 2005.
- [4] J. C. Bezdek, “Pattern Recognition with Fuzzy Objective Function Algorithms,” Plenum Press, 1981.
- [5] R. Krishnapuram and J.M. Keller, “A possibilistic approach to clustering,” IEEE Trans. on Fuzzy Systems, Vol.1, pp. 98-110, 1993.
- [6] F.Masulli and S. Rovetta, “Soft transition from probabilistic to possibilistic fuzzy clustering,” IEEE Trans. on Fuzzy Systems, Vol.14, No.4, pp. 516-527, 2006.
- [7] K. Honda, H. Ichihashi, F. Masulli, and S. Rovetta, “Linear fuzzy clustering with selection of variables using graded possibilistic approach,” IEEE Trans. Fuzzy Systems, Vol. 15, No. 5, pp. 878-889, 2007.
- [8] N. R. Pal, K. Pal, J. M. Keller, and J. C. Bezdek, “A possibilistic fuzzy c-means clustering algorithm,” IEEE Trans. on Fuzzy Systems, Vol.13, No.4, pp. 508-516, 2005.
- [9] H. Zha, C. Ding, M. Gu, X. He, and H. Simon, “Spectral relaxation for K-means clustering,” Advances in Neural Information Processing Systems 14 (Proc. of NIPS 2001), pp. 1057-1064, 2002.
- [10] C. Ding and X. He, “Linearized cluster assignment via spectral ordering,” Proc. of Int. Conf. Machine Learning (ICML 2004), pp. 233-240, 2004.
- [11] K. Rose, E. Gurewitz, and G. Fox, “A deterministic annealing approach to clustering,” Pattern Recognition Letters, Vol.11, pp. 589-594, 1990.
- [12] S. Miyamoto and M. Mukaidono, “Fuzzy c-Means as a regularization and maximum entropy approach,” Proc. of the 7th Int. Fuzzy Systems Association World Congress, Vol.2, pp. 86-92, 1997.
- [13] K. Honda, H. Ichihashi, A. Notsu, F. Masulli, and S. Rovetta, “Several formulations for graded possibilistic approach to fuzzy clustering,” Rough Sets and Current Trends in Computing (RSCTC) 2006, Lecture Notes in Artificial Intelligence 4259, pp. 939-948, Springer, 2006.
- [14] K. Honda and H. Ichihashi, “Linear fuzzy clustering techniques with missing values and their application to local principal component analysis,” IEEE Trans. Fuzzy Systems, Vol.12, No.2, pp. 183-193, 2004.
- [15] K. Honda and H. Ichihashi, “Regularized linear fuzzy clustering and probabilistic PCA mixture models,” IEEE Trans. Fuzzy Systems, Vol.13, No.4, pp. 508-516, 2005.
- [16] I. T. Jolliffe, “Discarding variables in a principal component analysis. I. Artificial data,” Appl. Statist., Vol.21, pp. 160-173, 1972.
- [17] Y. Tanaka and Y. Mori, “Principal component analysis based on a subset of variables: variable selection and sensitivity analysis,” American J. of Mathematics and Management Sciences, Vol.17, No.1&2, pp. 61-89, 1997.
- [18] VASpca (VAriable Selection in Principal Component Analysis),
http://mo161.soci.ous.ac.jp/vaspca/indexE.html
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.