single-jc.php

JACIII Vol.5 No.6 pp. 307-314
doi: 10.20965/jaciii.2001.p0307
(2001)

Paper:

Intelligent Hybrid System: A Reliability-Based Failure Management Application

Jose Aguilar*, Mariela Cerrad** and Katiuska Morillo***

*Universidad de Los Andes. Facultad de Ingenieria. Departamento de Computacion. CEMISID Avenida Tulio Febres Cordero, Merida 5101, Venezuela

**Universidad de Los Andes. Facultad de Ingenieria. Departamento de Sistemas de Control. CEMISID Avenida Tulio Febres Cordero, Merida 5101, Venezuela

***Universidad de Los Andes. Facultad de Ingenieria. Departamento de Sistemas de Control. Postgrado en Ingeniera de Control y Automatizacion. Edif. FACES. Nucleo La Hechicera, 3er. Piso, Merida 5101, Venezuela

Received:
November 22, 2001
Accepted:
December 3, 2001
Published:
November 20, 2001
Keywords:
intelligent hybrid systems, neural networks, fuzzy logic, maintenance, failure management, reliability-centered maintenance, industrial automation
Abstract
The integration of different intelligent techniques (such as Artificial Neural Networks, Fuzzy Logic, Genetic Algorithms, etc.) into a hybrid architecture allows to overcome their individual limitations. In industrial environments, these intelligent techniques can be combined to reach more effective solutions to complex problems. On the other hand, failure management in processes, equipment or plants, acquires more importance in modern industry every day, in order to minimize unexpected faults and guaranties a greater reliability, safety, disposition and productivity in the industry. In this paper, an intelligent system is designed for failure management based on Reliability Centered Maintenance methodology, Fuzzy Logic and Neural Networks. The system proposes the maintenance tasks according to the historical data of the equipment.
Cite this article as:
J. Aguilar, M. Cerrad, and K. Morillo, “Intelligent Hybrid System: A Reliability-Based Failure Management Application,” J. Adv. Comput. Intell. Intell. Inform., Vol.5 No.6, pp. 307-314, 2001.
Data files:

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Dec. 06, 2024