IJAT Vol.12 No.5 pp. 784-790
doi: 10.20965/ijat.2018.p0784

Technical Paper:

Orientation Compensation of an Inchworm Stage with Optical Navigation

Akihiro Torii, Yuta Mitsuyoshi, Suguru Mototani, and Kae Doki

Aichi Institute of Technology
1247 Yachigusa, Yakusa-cho, Toyota, Aichi 470-0392, Japan

Corresponding author

January 31, 2018
July 17, 2018
September 5, 2018
inchworm, piezoelectric actuator, positioning, orientation, optical feedback control

The orientation compensation of a three-degrees-of-freedom inchworm stage with optical navigation is described. As the stage does not use any guide or preload, a closed loop feedback control system is employed to retain the accurate orientation of the stage. The stage consists of piezoelectric actuators (piezos) for thrusting and electromagnets for positioning. A non-excited electromagnet is moved by the deformation of piezos, and excited electromagnets retain their positions. However, a weak electromagnetic force prevents the stage from retaining its accurate position. In addition, a friction force reduces the displacement of the non-excited electromagnet. Therefore, the orientation of the stage is measured using a light source and an optical detector, and the deformation of the piezos is controlled. The orientation error is reduced by using optical navigation.

Cite this article as:
A. Torii, Y. Mitsuyoshi, S. Mototani, and K. Doki, “Orientation Compensation of an Inchworm Stage with Optical Navigation,” Int. J. Automation Technol., Vol.12 No.5, pp. 784-790, 2018.
Data files:
  1. [1] Y. Nishimura, K. Hirata, and Y. Sakaidani, “3-DOF Outer Rotor Electromagnetic Spherical Actuator,” Int. J. Automation Technol., Vol.10, No.4, pp. 591-598, 2016.
  2. [2] M. V. Shutov, E. E. Sandoz, D. L. Howard, T. C. Hsia, R. L. Smith, and S. D. Collins, “A Microfabricated Electromagnetic Linear Synchronous Motor,” Sensors and Actuators A: Physical, Vol.121, No.2, pp. 566-575, 2005.
  3. [3] N. Yamashita and A. Yamamoto, “Three-DOF Electrostatic Induction Actuator Providing Translational and Rotational Surface-Drive Motion,” Int. J. Automation Technol., Vol.10, No.4, pp. 525-532, 2016.
  4. [4] M. Sasaki and M. Okugawa, “Motion Contol of a Pieopolymer Bimorph Flexible Microactuator,” J. Robot. Mechatron., Vol.7, No.6, pp. 467-473, 1995.
  5. [5] S. Tsujimura, Y. Hashimoto, T. Matsuoka, T. Hirayama, and K. Sasaki, “Pneumatic Servo Bearing Actuator with Multiple Bearing Pads for Ultraprecise Positioning,” Int. J. Automation Technol., Vol.7, No.5, pp. 498-505, 2013.
  6. [6] H. Yoshioka, H. Shinno, and H. Sawano, “A Low-Profile Planar Motion Table System Driven by Steel Belt,” Int. J. Automation Technol., Vol.9, No.6, pp. 739-745, 2015.
  7. [7] M. Aoyagi, R. Nakayasu, and H. Kajiwara, “Non-Resonance Type Linear Ultrasonic Motor Using Multilayer Piezoelectric Actuators with Parallel Beams,” Int. J. Automation Technol., Vol.10, No.4, pp. 557-563, 2016.
  8. [8] S. Ho and Y. Shin, “Design of a Semi-Oval Shaped Ultrasonic Motor,” Int. J. Automation Technol., Vol.7, No.5, pp. 537-543, 2013.
  9. [9] M. F. M. Sabri, T. Ono, and M. Esashi, “Modeling and Experimental Validation of the Performance of a Silicon XY-Microstage Driven by PZT Actuators,” J. of Micromechanics and Microengineering, Vol.19, No.9, pp. 1-9, 2009.
  10. [10] P. Gao, H. Tan, and Z. Yuan, “The Design and Characterization of a Piezo-Driven Ultra-Precision Stepping Positioner,” Meas. Sci. Technol., Vol.16, No.11, pp. 2186-2192, 2005.
  11. [11] R. Fujiwara, T. Shinshi, and M. Uehara, “Positioning Characteristics of a MEMS Linear Motor Utilizing a Thin Film Permanent Magnet and DLC Coating,” Int. J. Automation Technol., Vol.7, No.2, pp. 148-155, 2013.
  12. [12] Y. Irie, S. Hirata, C. Kanamori, and H. Aoyama, “Impact Piezo-Driven Micro Dispenser and Precise Miniature XY Stage,” J. Robot. Mechatron., Vol.27, No.3, pp. 259-266, 2015.
  13. [13] H. Kato, K. Hayakawa, A. Torii, and A. Ueda, “XYQ Actuators Using Piezoelectric and Electromagnetic Actuators,” T. IEE Japan, Vol.119-C, No.1, pp. 57-62, 1999 (in Japanese).
  14. [14] M. Shiraishi and H. Sumiya, “Sensing and Control of Friction in Positioning,” Int. J. Automation Technol., Vol.7, No.5, pp. 476-481, 2013.
  15. [15] S. Nishida and H. Kamimura, “Visual Measurement for On-Orbit Reflector Assembly,” J. Robot. Mechatron., Vol.27, No.5, pp. 480-488, 2015.
  16. [16] Y. Uchida, “Development of a Wide-Range Precision Positioning Sensor Based on Image Analysis of Diffracted Light,” Int. J. Automation Technol., Vol.9, No.5, pp. 588-592, 2015.
  17. [17] H. Matsumoto and K. Takamasu, “Automatic Recording Absolute Length-Measuring System with Fast Optical-Comb Fiber Interferometer,” Int. J. Automation Technol., Vol.9, No.5, pp. 482-486, 2015.
  18. [18] Y. Horikawa, A. Mizutani, T. Noda, and H. Kikuta, “Stereo Camera System with Digital Image Correlation Method for Accurate Masurement of Position and Orientation of Positioning Stage,” Int. J. Automation Technol., Vol.9, No.4, pp. 436-443, 2015.
  19. [19] A. Torii, T. Inoue, K. Doki, and A. Ueda, “Error Compensation of a Position Measurement System with Moving Landmarks,” IEEJ Trans. EIS, Vol.127, No.5, pp. 741-747, 2007 (in Japanese).
  20. [20] T. Oiwa, M. Katsuki, M. Karita, W. Gao, S. Makinouchi, K. Sato, and Y. Ohashi, “Questionnaire Survey on Ultra-Precision Positioning,” Int. J. Automation Technol., Vol.5, No.6, pp. 766-772, 2011.
  21. [21] T. Tanahashi, A. Torii, M. Banno, A. Ueda, and K. Doki, “A Position Measurement Method for a Miniature Mobile Robot Using Three Moving Landmarks,” Service Robotics and Mechatronics, K. Shirase and S. Aoyagi (Eds), Springer, pp. 153-158, 2008.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Jul. 12, 2024